• 제목/요약/키워드: Deburring Force

검색결과 29건 처리시간 0.021초

디버링 휠의 회전수 변화에 따른 디버링 특성에 관한 실험적 연구 (An Experimental Study on the Deburring Characteristics according to rpm Change of Deburring Wheel)

  • 천경호;김해지
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.103-110
    • /
    • 2018
  • The modern aircraft consists of tens/hundreds of thousands of components. A large proportion of these components are manufactured using a machining process. A deburring process must be performed after to machining. This study investigates the effect of changes in the deburring wheel rpm on the deburring force and radius. The deburring wheel is used to trim sharp edges off machined parts of the aircraft. The deburring wheel used consists of a core and a nylon hair(this new concept is protected under patent). We find that higher deburring wheel rpm results in increased deburring force and radius. For deburring wheel rotation rates of 500~750rpm, deburring force of 3.4~6.5kgf and deburring radius of 0.4~0.5mm were observed.

신경망을 이용한 ROBOT ARM의 디버링(Deburring) 작업에 관한 연구 (A study on deburring task of robot arm using neural network)

  • 주진화;이경문;이장명
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.139-142
    • /
    • 1996
  • This paper presents a method of controlling contact force for deburring tasks. The cope with the nonlinearities and time-varying properties of the robot and the environment, a neural network control theory is applied to design the contact force control system. We show that the contact force between the hand and the contacting surface can be controlled by adjusting the command velocity of a robot hand, which is accomplished by the modeling of a robot and the environment as Mass-Spring-Damper system. Simulation results are shown.

  • PDF

디버링 작업을 위한 로봇 매니퓰레이터의 힘 제어에 관한 연구 (A Study on the Force Control of a Robot Manipulator in the Deburring Process)

  • 채호철;한창수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.1169-1172
    • /
    • 1995
  • In this paper, the external force control and hybrid force control algorithms are proposed to apply Deburring process. the purpose of adjust which can be implemented to on unknown environments, adaptive control law(MRAC) is adopted. IF a model system is given, the plant system can be controlled on the way which we will introduce to. We showed the validation and the possibility of Deburring process with multi-dimensional force control through experiments. the experimental result show the validity of Deburring in the robot manipulator.

  • PDF

IDC장치에 대한 공압시스템의 모델링에 관한 연구 (A Study on Modeling of Pneumatic System for an IDC Device)

  • 웬치탄;레광환;정영만;양순용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권3호
    • /
    • pp.11-17
    • /
    • 2015
  • An intelligent deburring control (IDC) device is used to control the constant force for a deburring tool mounted on the end-effector of a robotic arm. This device maintains a constant contact force between the deburring tool and the workpiece in order to provide a good deburring performance. In this paper, we build a mathematical model in Matlab/Simulink to estimate the force control mechanism of the pneumatic system for the IDC device. The Simulink blocks are built for each separate part and are linked into an integrated simulation system. Such a model also relies on the effects of the flow rate through the valve, air compressibility in the cylinder, and time delay in the pressure valve. The results of the simulation are compared to a simple experiment in which convenient math modeling is performed. These results are then used to optimize the mechanical design and to develop a force control algorithm for the pneumatic cylinder.

산업용 로봇의 힘측정 시스템을 위한 힘측정 및 통신장치 개발 (Development of a Force Measurement and Communication System for the Force Measuring System in Industrial Robots)

  • 이경준;김갑순
    • 제어로봇시스템학회논문지
    • /
    • 제22권2호
    • /
    • pp.89-96
    • /
    • 2016
  • This paper describes the design of a force measurement and communication system for the force measuring system in industrial robots. The force measurement and communication system is composed of a multi-axis force sensor and a controller for measuring the forces (x-direction force, y-direction force and z-direction force) and sending the measured forces to the robot's controller (PLC: Programmable Logic Controller). In this paper, the force measurement and communication system was designed and fabricated by using a DSP (Digital Signal Processor). An environment test and a grinding and deburring test using an industrial robot with the force measurement and communication system with three-axis force sensor were carried out to characterize the system. The tests showed that the system could safely measure the forces from the three-axis force sensor and send the measured forces to the industrial robot's controller while the grinding and deburring test was performed. Thus, it is thought that the fabricated force measurement and communication system could be used for controlling the force for an industrial robot's grinding and deburring.

비젼과 힘센서를 이용한 불균일 버의 디버링 가공 (Deburring of Irregular Burr using Vision and Force Sensors)

  • 최규종;김영원;신상운;안두성
    • 동력기계공학회지
    • /
    • 제2권3호
    • /
    • pp.83-88
    • /
    • 1998
  • This paper presents an efficient control algorithm that removes irregular burrs using vision and force sensors. In automated robotic deburring, the reference force should be accommodated to the profile of burrs in order to prevent the tool breakage. In this paper, (1) The profile of burrs is recognized by vision sensor and followed by the calculation of reference force, (2) Deburring expert's skill is transferred to robot. Finally, the performance of robot is evaluated through simulation and experiment.

  • PDF

산업용로봇을 이용한 디버링을 위한 힘측정시스템 설계 (Design of Force Measuring System for Deburring Using Industrial Robot)

  • 이경준;김한솔;김정진;김현민;김갑순
    • 한국정밀공학회지
    • /
    • 제32권7호
    • /
    • pp.653-660
    • /
    • 2015
  • This paper describes the design of the force measuring system for an industrial robot's deburring work. The force measuring system is composed of a three-axis force sensor, a measuring device, a housing and a cover. The three-axis force sensor can detect x-direction force, y-direction force and z-direction force at the same time. The measuring device is designed using DSP(Digital Signal Processor), and have a RS-232 and a RS-485 communication port for sending force data to PC or other controller. As a result of test, the repeatability error and the non-lineality error of the three-axis force sensor are less than 0.03%, and the interference error of the sensor is less than 0.95%. It is thought that the force measuring system can be used for an industrial robot's deburring work.

로봇의 디버링 작업이나 표면 광택작업을 위한 새로운 힘제어 기술 개발 (New Robbt Force Control Technique for Deburring and Polishing Process)

  • 정슬
    • 제어로봇시스템학회논문지
    • /
    • 제6권9호
    • /
    • pp.786-795
    • /
    • 2000
  • In this paper, a new impedance force control method for deburring and polishing process is proposed. The proposed method is robust to deal with unknown environment stiffness as unknown well as environment location. An adaptive technique is used to minimize the force error occurred due to unknown environment surface profile. A robust position control algorithm based on time-delayed information is used to cancel out uncertainties in robot dynamics. A three link robot manipulator is used to demonstrate performances of the proposed control on deburring and polishing tasks. Stability analysis for the adaptive control is presented and its results are confirmed by simulations.

  • PDF

산업용로봇을 이용하는 지능 버 제거 시스템 개발에 관한 연구 (Development of Intellingent Deburring System Based on Industial Robot)

  • 신상운;최규종;안두성
    • 수산해양기술연구
    • /
    • 제34권1호
    • /
    • pp.1-5
    • /
    • 1998
  • This study presents intelligent deburring system which can transfer the exper's skill to deburring robot through neural network. The expert's skill is expressed as associate mapping between the characteristics of the burr and human expert's action. Under the fundamental idea that the state of the deburring process can be extracted via the visual sense of the human, we employ vision system for the perception and identification of the changing burr. From the demonstration of human experts, force data are measured and fitted impedance model. Finally the characteristics of the burr and coressponding force are associated by the neural network which is trained through many demonstrations. The proposed method is verified in the deburring process of welding burr.

  • PDF

비젼을 이용한 디버링 기술의 로봇에의 전달 (Deburring Skills to Robot Using Vision System)

  • 신상운;최규종;이규상;김영원;안두성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.1110-1113
    • /
    • 1995
  • This study presents the new method which can transfer the expert's skill to deburring robot through neural network. The expert's skill is expressed as associationmapping between the characteristics of the burr and human expert's action. Under the fundamental idea that the state of the deburring processcan be extracted via the visual sense of the human,we employ vision system for the perception and identification of the changing burr. Form the demonstration of human experts, force data are measured. Finally the characteristics of the burr and coressponding force are associated by the neural network which is trained through many demonstrations. The proposed method is verified in the deburring process of welding burr.

  • PDF