• Title/Summary/Keyword: Debris size

Search Result 158, Processing Time 0.034 seconds

Experiments on Sedimentation of Particles in a Water Pool with Gas Inflow

  • Kim, Eunho;Jung, Woo Hyun;Park, Jin Ho;Park, Hyun Sun;Moriyama, Kiyofumi
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.457-469
    • /
    • 2016
  • During the late phase of severe accidents of light water reactors, a porous debris bed is expected to develop on the bottom of the flooded reactor cavity after breakup of the melt in water. The geometrical configuration, i.e., internal and external characteristics, of the debris bed is significant for the adequate assessment of the coolability of the relocated corium. The internal structure of a debris bed was investigated experimentally using the DAVINCI (Debris bed research Apparatus for Validation of the bubble-Induced Natural Convection effect Issue) test facility. Particle sedimentation under the influence of a two-phase natural convection flow due to the decay heat in the debris bed was simulated by dropping various sizes of particles into a water vessel with air bubble injection from the bottom. Settled particles were collected and sieved to obtain the particle mass, size distribution in the radial and axial positions, and the bed porosity and permeability. The experimental results showed that the center part of the particle bed tended to have larger particles than the peripheral area. For the axial distribution, the lower layer had a higher fraction of larger particles. As the sedimentation progressed, the size distribution in the upper layers can shift to larger sizes because of the higher vapor generation rate and stronger flow intensity.

Development of a GIS-based Computer Program to Design Countermeasures against Debris Flows (GIS기반 토석류 산사태 대응공법 설계 프로그램 개발)

  • Song, Young-Suk;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.57-65
    • /
    • 2013
  • We developed a computer program (CDFlow v. 1.0) to design countermeasures against debris flows in natural terrain. The program can predict the probability of landslides occurring in natural terrain and can estimate the zone of damage caused by a debris flow. It can also be used to design the location and size of countermeasures against the debris flow. The program is run using the ArcGIS Engine, which is one of the most well-known Geographic Information System (GIS) tools for developers. The quasi-dynamic wetness index and the infinite slope stability equation were applied to predict landslide probability as a type of slope safety factor. The calculated safety factor was compared with the required safety factor, and areas of high probable potential for landslides were then selected and represented on the digital map. The volume of debris flow was estimated using these areas of high probable potential for landslides and soil depth. The accumulated volume of debris flow can be calculated along the flow channel. To assess the accuracy of the program, it was applied to a real landslide site at Deoksan-ri, Inje-gun, Kangwon-Province, where four debris barriers have been installed in the watershed of the site. The results of soil tests and a field survey indicate that the program has great potential for estimating probable landslide areas and the trajectory of debris flows. Calculation of the capacity volume of existing debris barriers revealed that they had insufficient capacity to store the calculated amount of debris flow. Therefore, this program enables a rational estimation of the optimal location and size of debris barriers.

The effect of implant drilling speed on the composition of particle collected during site preparation

  • Jeong, Chang-Hee;Kim, Do-Young;Shin, Seung-Yun;Hong, Jong-Rak;Kye, Seung-Beom;Yang, Seung-Min
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.sup2
    • /
    • pp.253-259
    • /
    • 2009
  • Purpose: This study was aimed to evaluate the effect of implant drilling speed on the composition of particle size of collected bone debris. Methods: $Br{\aa}nemark$ $System^{(R)}$ drills were used to collect bone debris from 10 drilling holes (1 unit) at 1,500 rpm (Group A) and 800 rpm (Group B) in bovine mandible. After separating particles by size into > 500 ${\mu}m$, between 250 ${\mu}m$ and 500 ${\mu}m$, and < 250 ${\mu}m$ fractions, particle wet volume, dry volume, and weight were measured and the proportion of 3 fractions of bone debris to total wet volume, dry volume and weight was calculated as wet volume % , dry volume % and weight %. Results: No significant differences were found between Group A and B in wet volume, dry volume, and weight. However, of >500 ${\mu}m$ fractions, Group B had significantly higher wet volume %(P = 0.0059) and dry volume %(P = 0.0272) than in Group A. Conclusions: The drilling speed influenced the composition of particle size in collected drilling bone debris. The drilling in 800 rpm produced the more percentage of large particles than in 1,500 rpm. However, the drilling speed didn't effect on total volume of and weight of bone debris.

Analysis of Wear Debris on the Lubricated Machine Surface by the Neural Network (Neural Network에 의한 기계윤활면의 마멸분 해석)

  • 박흥식
    • Tribology and Lubricants
    • /
    • v.11 no.3
    • /
    • pp.24-30
    • /
    • 1995
  • This paper was undertaken to recognize the pattern of the wear debris by neural network as a link for the development of diagnosis system for movable condition of the lubricated machine surface. The wear test was carried out under different experimental conditions using the wear test device was made in laboratory and wear testing specimen of the pin-on-disk type were rubbed in paraffine series base oil, by varying applied load, sliding distance and mating material. The neural network has been used to pattern recognition of four parameter (diameter, elongation, complex and contrast) of the wear debris and learned the friction condition of five values (material 3, applied load 1, sliding distance 1). The three kinds of the wear debris had a different pattern characteristic and recognized the friction condition and materials very well by the neural network. The characteristic parameter of the large wear debris over a few micron size enlarged recognition ability.

Study on Landscape Preference of Debris Barriers Types (사방댐의 유형별 경관선호 분석)

  • Lee, Sang-Won;Kang, Mi-Hee;Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.283-291
    • /
    • 2011
  • The purpose of this study was to identify the public's preferences of different types of debris barriers and the impacts of construction materials, design, size, and planting on landscape preferences. On-site survey was carried out in Mt. Palgong during on December, 2009 and a total 122 visitors' data were analyzed. A total of 82 students Yeungnam and Donga University were also questioned in the classes during on December, 2009. Survey results showed that the debris barrier constructed with natural materials such as stone were more preferred and the level of planting around the debris barrier impacted most on the landscape preferences. The results imply that the importance of eco-friendly construction materials and methods has been increased in term of not only environmental conservation but also people's preferences. Therefore, the factors for enhancing landscape of debris barrier should be considered synthetically in terms of construction material, design, size, and planting level.

Influence of Debris in Micro Electrical Discharge Machining Processes (미세방전가공 중 발생하는 debris를 고려한 가공특성 연구)

  • Kook K.H.;Lee H.W.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1244-1247
    • /
    • 2005
  • The material removal mechanism of Electrical Discharge Machining (EDM) process has been studied for several decades. However, understanding of the material removal mechanism is still a difficult problem because the mechanism involves complicated physical phenomena including plasma. Especially, for a micro-EDM process, due to the influence of the debris that is generated during the machining process, quantitative modeling of EDM becomes more complex. To understand better the effects of the debris in the micro-EDM process experimentally, a new approach has been introduced in this study. Using a specially designed workpiece holder, the debris generated during the EDM with various process conditions has been collected. Then, using a simulated environment using micro-sized metal powders, the influence of the debris during the single EDM discharge has been observed. The effects of EDM process parameters on the debris size and product quality are discussed.

  • PDF

A PARTICLE TRACKING MODEL TO PREDICT THE DEBRIS TRANSPORT ON THE CONTAINMENT FLOOR

  • Bang, Young-Seok;Lee, Gil-Soo;Huh, Byung-Gil;Oh, Deog-Yeon;Woo, Sweng-Woong
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.211-218
    • /
    • 2010
  • An analysis model on debris transport in the containment floor of pressurized water reactors is developed in which the flow field is calculated by Eulerian conservation equations of mass and momentum and the debris particles are traced by Lagrange equations of motion using the pre-determined flow field data. For the flow field calculation, two-dimensional Shallow Water Equations derived from Navier Stokes equations are solved using the Finite Volume Method, and the Harten-Lax-van Leer scheme is used for accuracy to capture the dry-to-wet interface. For the debris tracing, a simplified two-dimensional Lagrangian particle tracking model including drag force is developed. Advanced schemes to find the positions of particles over the containment floor and to determine the position of particles reflected from the solid wall are implemented. The present model is applied to calculate the transport fraction to the Hold-up Volume Tank in Advanced Power Reactors 1400. By the present model, the debris transport fraction is predicted, and the effect of particle density and particle size on transport is investigated.

ANALYSTS OF DAMAGE PROBABILITY FOR COLLISION BETWEEN SPACE DEBRIS AND A SATELLITE IN LOW-EARTH ORBIT (우주파편에 의한 저궤도 위성의 손상확률 분석)

  • Lee, Jae-Eun;Park, Sang-Young;Kim, Young-Rok;Choi, Kyu-Hong;Kim, Eung-Hyun;Kim, Gyu-Sun
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.2
    • /
    • pp.135-144
    • /
    • 2007
  • Space environment becomes more hazardous for satellite because of increasing number of space debris. This research is to analyze collision hazards between KOMPSAT 3 in low-earth orbit and space debris generated by the explosion of FengYun satellite on the January 11, 2007. Based on the observed data of the space debris from FengYun satellite, the mass and number distribution of the debris are estimated including undetectable debris from the explosion of FengYun satellite. The spatial density and flux for the space debris can be calculated according to size. This study also brings out the analysis for the assessment of collision probability and damage probability. The algorithm developed in the current paper can be used to estimate the level of risk due to space debris for the satellites that will be launched in the future.

A Study on the Performance Assessment of Nuclear Fuel Debris Filtration Using the Weighted Mean (가중평균을 이용한 핵연료 이물질 여과성능 평가에 관한 연구)

  • Park, Joon Kyoo;Lee, Seong Ki;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.149-156
    • /
    • 2017
  • Nuclear fuel requires high reliability and safety and therefore contains debris filtering devices to prevent failure-inducing debris from entering it. The debris filtering performance of nuclear fuel is one of the most important factors for fuel integrity. Therefore, the performance must be evaluated and the measurement must be reasonable. In this study, a calculation method of the comprehensive filtering efficiency using the weighted mean was proposed to establish a standard filtering efficiency index. To confirm the suitability of the proposed method, representative debris specimens were selected and the filtering efficiency with the weighted mean was compared with the efficiency of the arithmetic mean. The weighting factor of the weighted mean was introduced to produce a fair evaluation. In addition, the analysis of the debris filtering mechanism was performed according to the size of debris specimens, and the main dimensions of the filtering feature for commercial nuclear fuel.

Changes in Water Depth and Velocity by Debris around Piers (교각 주위내 부유잡목에 의한 수위 및 유속변화에 관한 연구)

  • Choi, Gye-Woon;Kim, Gee-Hyoung;Park, Yong-Sup
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.273-284
    • /
    • 2003
  • In this paper, the reasons of damages and the case study are review in which bridge pier with debris accumulation, and safety Influence factors by debris around the bridge piers are review. Also experiment Is conducted for the characteristic of flow around piers by different area and angle of debris and the basic characteristics was review for safe design of bridge and embankments. As result of review of several standards of design, hydraulic structure's freeboard is simply decided by discharge, so it needs more detail standards. And as result of experiment, in the case of that water depth is deep and velocity is slow, variation of water depth Is more increase as increasing of debris. Therefore the variation regime of flow characteristics like velocity and water depth by debris is more large in the stream of small or medium size, which streams have large water depth and slow velocity so Froude Number Is expressed as small in the flood. Also when Froude Number is about 0.5, the water elevation is over freeboard in the standard if the debris over 20%. Therefore when hydraulic structure is constructed in the stream of small or medium size, it need to conduct more detail experiments about influence of debris, distribution of velocity and variation of elevation, and than the more safe freeboard will be presented using the experimental results.