• Title/Summary/Keyword: Debris flows

Search Result 112, Processing Time 0.026 seconds

Hazard Prevention using Multi-Level Debris Flow Barriers (다단식(다단식) 토석류 방호책을 이용한 재해방지 시스템)

  • Lee, Sung-Uk;Choi, Seung-Il;Choi, Yu-Kyung
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.815-829
    • /
    • 2008
  • Debris flows are a natural hazard which looks like a combination of flood, land and rock slide. Large rainfall in July 2006 produced several large scale debris flows and many small debris flows that resulted in loss of life and considerable property and railway damage, as was widely reported in the national media. The hazard "debris flow" is still insufficiently researched. Furthermore debris flows are very hard to predict. Flexible Ring net barriers are multi-functional mitigation devices commonly applied to rock fall or floating wood protection in floods, snow avalanches and also mud flows or granular debris flows, if properly dimensioned for the process or processes for which they are intended. Overtopping of the barriers by debris flows and sediment transport is possible, supporting the design concept that a series of barriers may be used to stop volumes of debris larger than are possible using only one barrier. The future for these barrier concepts looks promising because these barriers represent the state of art for such applications and are superior to many other available options.

  • PDF

The Current States of Debris Flow Hazards and Suggestion of Damage Mitigation Methods in Korea (국내 토석류 재해 현황 및 피해저감 방안)

  • Chae, Byung-Gon;Cho, Yong-Chan;Song, Young-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.302-311
    • /
    • 2008
  • There have been repetitive landslides and debris flows on natural terrain induced by intensive rainfalls which have never been experienced during the last a few decades in Korea. Frequencies and magnitudes of landslides and debris flows are steeply increased after 2000 resulting in huge damages of human beings and facilities. According to a statistical data from NEMA, the human deaths induced by landslides and slope hazards occupies 22.3% of the total human deaths by all the natural hazards in Korea during the last 30 years. Among the human deaths by landslides and slope hazards, 85% of the damages were caused by landslides and debris flows on natural hazards. Therefore, this paper summarizes important events of landslides and debris flows, their characteristics, and suggests some methods of damage mitigation.

  • PDF

Debris Flows Mitigation by means of Flexible Barriers (토석류 피해저감을 위한 유연성 방호책 적용에 관한 연구)

  • You Byung-Ok;Chang Buhm-Soo;Choi Seung-Il;Choi Yu-Kyung
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.220-231
    • /
    • 2006
  • Debris flows are a natural hazard which looks like a combination of flood, land and rock slide. Large rainfall in July 2006 produced several large scale debris flows and many small debris flows that resulted in loss of life and considerable property and highway damage, as was widely reported in the national media. The hazard "debris flow" is still insufficiently researched Furthermore debris flows are very hard to predict. In this paper, a general over view of the debris flow problems along the highway, a generic way for the design and dimensioning of flexible barrier systems will be presented. A brief description of the various unique barrier types will be provided, too. The future for these barrier concepts looks promising because these barriers represent the state of art for such applications and are superior to many other available options.

  • PDF

Smart monitoring system with multi-criteria decision using a feature based computer vision technique

  • Lin, Chih-Wei;Hsu, Wen-Ko;Chiou, Dung-Jiang;Chen, Cheng-Wu;Chiang, Wei-Ling
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1583-1600
    • /
    • 2015
  • When natural disasters occur, including earthquakes, tsunamis, and debris flows, they are often accompanied by various types of damages such as the collapse of buildings, broken bridges and roads, and the destruction of natural scenery. Natural disaster detection and warning is an important issue which could help to reduce the incidence of serious damage to life and property as well as provide information for search and rescue afterwards. In this study, we propose a novel computer vision technique for debris flow detection which is feature-based that can be used to construct a debris flow event warning system. The landscape is composed of various elements, including trees, rocks, and buildings which are characterized by their features, shapes, positions, and colors. Unlike the traditional methods, our analysis relies on changes in the natural scenery which influence changes to the features. The "background module" and "monitoring module" procedures are designed and used to detect debris flows and construct an event warning system. The multi-criteria decision-making method used to construct an event warring system includes gradient information and the percentage of variation of the features. To prove the feasibility of the proposed method for detecting debris flows, some real cases of debris flows are analyzed. The natural environment is simulated and an event warning system is constructed to warn of debris flows. Debris flows are successfully detected using these two procedures, by analyzing the variation in the detected features and the matched feature. The feasibility of the event warning system is proven using the simulation method. Therefore, the feature based method is found to be useful for detecting debris flows and the event warning system is triggered when debris flows occur.

Hazard Prevention Using Multi-Level Debris Flow Barriers (다단식(多段式) 유연성 토석류 방지시설에 관한 적용성 검토 연구)

  • Baek, Yong;Choi, Youngchul;Kwon, Oil;Choi, Seungil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.15-23
    • /
    • 2010
  • Debris flows are a natural hazard which looks like a combination of flood, land and rock slide. Large rainfall in July 2006 produced several large scale debris flows and many small debris flows that resulted in loss of life and considerable property and railway damage, as was widely reported in the national media. The hazard "debris flow" is still insufficiently researched. Furthermore debris flows are very hard to predict. Flexible Ring net barriers are multi-functional mitigation devices commonly applied to rock fall or floating wood protection in floods, snow avalanches and also mud flows or granular debris flows, if properly dimensioned for the process or processes for which they are intended. Overtopping of the barriers by debris flows and sediment transport is possible, supporting the design concept that a series of barriers may be used to stop volumes of debris larger than are possible using only one barrier. The future for these barrier concepts looks promising because these barriers represent the state of art for such applications and are superior to many other available options.

The Lago Sofia Conglomerate : Debris Flow to Hyperconcentrated Flow Deposits in a Cretaceous Submarine Channel, Southern Chile

  • Choe, Moon-Young;Sohn, Young-Kwan;Jo, Hyung-Rae;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.289-300
    • /
    • 2002
  • The Lago Sofia conglomerates encased in the Cretaceous Cerro Toro Formation, southern Chile, represent a gigantic submarine channel system developed along a foredeep trough. The channel system consists of several tributaries along the trough margin and a trunk channel along the trough axis. Voluminous debris flows were generated ubiquitously along the tract of the submarine channel mainly by the failure of nearby channel banks or slopes. The flows transformed immediately into multiphase flows and resulted in very thick-bedded mass-flow deposits with a peculiar structure sequence. The mass-flow deposits commonly overlie fluted or grooved surfaces and consist of a lower division of clast-supported and imbricated pebble-cobble conglomerate with common basal inverse grading, and an upper division of clast- to matrix-supported and disorganized pebble conglomerate or pebbly mudstone with abundant intraformational clasts. The structure sequence suggests a temporal succession of a turbidity current, a bipartite hyperconcentrapted flow with active clast collisions near the flow base, and a cohesive debris flow probably with a rigid plug. The multiphase flow is interpreted to have resulted from transformation of clast-rich but cohesive debris flows. Cohesive debris flows appear to transform more easily into dilute flow types in subaqueous environments because they are apt to hydroplane. This is in contrast to the flow transitions in subaerial environments where noncohesive debris flows are dominant and difficult to hydroplane.

Rheological Characteristics of Debris Flows (토석류 이동의 레올로지적 특성)

  • 김상규;서홍석
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.125-132
    • /
    • 1997
  • It is observed that debris mitred with a wide range of soil particles and water moves downwards like viscous fluid soon after a landslide has triggered. An Assumption can be made from the field observation that the debris flow behaves as a kind of non(non-Newtoniron) Newtonian fluid which has non linear viscosity. In this study, a series of viscosity tests are carried out to measure rheological properties of debris by using a viscometer with semples taken from a landslide site. It is proved that debris flows behave as Bingham plastic mod el of non-Newtonian fluid. This model can be used predict the movement of debris flows.

  • PDF

A Combined Method for Rainfall-induced Landslides and Debris Flows in Regional-scale Areas (광역적 산사태-토석류 연계해석기법 제안)

  • Hong, Moonhyun;Jeong, Sangseom
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.10
    • /
    • pp.17-31
    • /
    • 2019
  • This study describes a prediction method for rainfall-induced landslides and subsequently debris flows in a regional scale areas. Special attention is given to the calculation of the propagation of debris flows by considering rainfall infiltration into soil slopes and soil entrainments by debris flows. The proposed method was verified by comparing the analytical results and the measured ones reported by the previous research. As a result, predictions and observations were quite similar in terms of the front position, the velocity, volume and momentum of debris flows. Even when applied to natural mountain slope with complicated terrain, numerical results and observations were similar. At last, the combined analysis of landslides and debris flows were conducted. The landslides prediction showed a predictive rate of about 83%, and the result of the final volume of debris flow showed an error rate of 3%. As a result, the proposed combined method for landslides and debris flows overcomes the problem of separating the landslides analysis and the debris flows simulation. Especially, the proposed method can analyze the effects of rainfall on entrainments by debris flows as well as rainfall-induced landslides and the behavior of debris flows.

An Analysis of Debris Flow Movements Using Rheological Model (레올로지 모델을 이용한 토석류 이동해석)

  • 김상규;서흥석
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.133-144
    • /
    • 1997
  • It was proved from the viscosity test for deposits of debris flows(Kim and Seo, 1997) that the property of debris flows could be represented as Bingham plastic model. Based on this bahavior, numerical analysis for the movement of debris flows is carried out by using a computer progran Polyflow which huts been developed for the analysis of the behavior of non-Newtonian fluid. The numerical results obtained from two sites agree well with the movement predicted by an empirical formula. It can be concluded, therefore. that this scheme can be used for the analysis of the movement of debris flow.

  • PDF

Debris flow case study and remediation in Kangwon Province (강원도 지역의 토석류 피해사례 및 대책공법 연구)

  • Chang, Buhm-Soo;Choi, Seung-Il;Choi, Yu-Kyung;Lee, Jong-Hun;Yu, Byung-Ok
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.392-401
    • /
    • 2006
  • In the July of 2006, devastating rainfalls ravaged the terrain in the province of Kangwon. These rainfalls resulted in debris flows, landslide and overflow over the habitat. Following these events, the urgent field study and countermeasures were to be needed and several methods were indicated. At each site, field observations were made and the properties of the channel and debris flow were broadly characterized. Debris flows are a natural hazard which looks like a combination of flood, land and rock slide. The same goes for that case, debris flow has been reported frequently overseas and the extent of damages has been increased. But the hazards "debris flow" is still insufficiently researched and futhermore debris flows are very hard to predict. In this paper, the general overview of the debris flow problem and the mitigation method will be presented

  • PDF