• Title/Summary/Keyword: Debonding failure

Search Result 211, Processing Time 0.019 seconds

Improved interfacial stress analysis of a plated beam

  • Hao, Sheng-Wang;Liu, Yan;Liu, Xiao-Dan
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.815-837
    • /
    • 2012
  • A plated beam is strengthened by bonding a thin plate to the tension face; it often fails because of premature debonding of the thin plate from the original beam in a brittle manner. A sound understanding of the mechanism of such debonding failure is very important for the effective use of this strengthening technique. This paper presents an improved analytical solution for interfacial stresses that incorporates multiple loading conditions simultaneously, including prestress, mechanical and thermal loads, and the effects of adherend shear deformations and curvature mismatches between the beam and the plate. Simply supported beams bonded with a thin prestressing plate and subjected to both mechanical and thermal loading were considered in the present work. The effects of the curvature mismatch and adherend shear deformations of the beam and plate were investigated and compared. The main mechanisms affecting the distribution of interfacial stresses were analyzed. Both the normal and shear stresses were found to be significantly influenced by the coupled effects of the elastic moduli with the ratios $E_a/E_b$ and $E_a/E_p$.

Timber-FRP composite beam subjected to negative bending

  • Subhani, Mahbube;Globa, Anastasia;Moloney, Jules
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.353-365
    • /
    • 2020
  • In the previous studies, the authors proposed the use of laminated veneer lumber - carbon fiber reinforced polymer (LVL-CFRP) composite beams for structural application. Bond strength of the LVL-to-CFRP interface and flexural strengthening schemes to increase the bending capacity subjected to positive and negative moment were discussed in the previous works. In this article, theoretical models are proposed to predict the moment capacity when the LVL-CFRP beams are subjected to negative moment. Two common failure modes - CFRP fracture and debonding of CFRP are considered. The non-linear model proposed for positive moment is modified for negative moment to determine the section moment capacity. For the debonding based failure, previously developed bond strength model for CFRP-to-LVL interface is implemented. The theoretical models are validated against the experimental results and then use to determine the moment-rotation behaviour and rotational rigidity to compare the efficacy of various strengthening techniques. It is found that combined use of bi- and uni-directional CFRP U-wrap at the joint performs well in terms of both moment capacity and rotational rigidity.

CLINICAL PERSPECTIVES ON 2-UNIT CANTILEVERED RESIN-BONDED FIXED PARTIAL DENTURE (2-unit cantilever 레진접착성 가공의치 (resin-bonded fixed partial denture) 임상의 현재)

  • Yi Yang-Jin;Choi Lee-Ra;Parki Chan-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.1
    • /
    • pp.81-88
    • /
    • 2003
  • Resin-bonded bridge has been an alternative to conventional bridge, since resin-bonded bridge has many attractive advantages such as minimal tooth preparation, short chair time and low cost over conventional bridge. Unfortunately, however, it was reported that resin-bonded bridge showed high failure rate from debonding of retainer in spite of consecutive advances in preparation and materials. And it was shown that multiple abutments were more likely to fail. The majority of debonding failure was considered due to the mobility of the abutment during function. In this view, recently, modification in resin-bonded bridge design was tried. Single retainer, single pontic. 2-unit cantilevered resin-bonded bridge was applied to clinical performance and was shown as retentive or more retentive than fixed-fixed type resin-bonded bridge. This was consistent with the results of studies in 2-unit cantilevered resin-bonded bridges made with all ceramic, In-ceram. The purpose of this article was to overview principles of design and to analyze clinical results of 2-unit cantilevered resin-bonded bridge in comparison with the reports of fixed-fixed resin-bonded bridge.

Interfacial stress assessment at the cracked zones in CFRP retrofitted RC beams

  • Hojatkashani, Ata;Kabir, Mohammad Zaman
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.705-733
    • /
    • 2012
  • In this work, an experimental examination was carried out to study interfacial stresses developed at the junction zones between carbon fiber reinforced plastic (CFRP) fabrics (~1 mm thickness) and tensile concrete portion in CFRP retrofitted RC beams. In this respect, initially six similar RC beams of $150{\times}150{\times}1000mm$ dimensions were prepared. Three of which were strengthened with CFRP fabrics at the tensile side of the beams. Furthermore, a notch was cut at the center of the bottom surface for all of the studied beams. The notch was 15 mm deep and ran across the full width of tension side of the beams. The mentioned interfacial stresses could be calculated from strains measured using strain gauges mounted on the interface zone of the tensile concrete and the CFRP sheet. Based on the results obtained, it is shown that interfacial stresses developed between CFRP fabrics and RC beam had a noticeable effect on debonding failure mode of the latter. The load carrying capacity of CFRP strengthened RC specimens increased ~75% compared to that of the control RC beams. This was attributed to the enhancement of flexural mode of the former. Finally, finite element analysis was also utilized to verify the measured experimental results.

Flexural strengthening of RC one way solid slab with Strain Hardening Cementitious Composites (SHCC)

  • Basha, Ali;Fayed, Sabry;Mansour, Walid
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.511-527
    • /
    • 2020
  • The main aim of the current research is to investigate the flexural behavior of the reinforced concrete (RC) slabs strengthened with strain hardening cementitious composites (SHCC) experimentally and numerically. Seven RC slabs were prepared and tested under four-points loading test. One un-strengthened slab considered as control specimen while six RC slabs were strengthened with reinforced SHCC layers. The SHCC layers had different reinforcement ratios and different thicknesses. The results showed that the proposed strengthening techniques significantly increased the ultimate failure load and the ductility index up to 25% and 22%, respectively, compared to the control RC slab. Moreover, a three dimensional (3D) finite element model was proposed to analyze the strengthened RC slabs. It was found that the results of the proposed numerical model well agreed with the experimental responses. The validated numerical model used to study many parameters of the SHCC layer such as the reinforcement ratios and the different thicknesses. In addition, steel connectors were suggested to adjoin the concrete/SHCC interface to enhance the flexural performance of the strengthened RC slabs. It was noticed that using the SHCC layer with thickness over 40 mm changed the failure mode from the concrete cover separation to the SHCC layer debonding. Also, the steel connectors prevented the debonding failure pattern and enhanced both the ultimate failure load and the ductility index. Furthermore, a theoretical equation was proposed to predict the ultimate load of the tested RC slabs. The theoretical and experimental ultimate loads are seen to be in fairly good agreement.

Flexural Performance of RC Beams Strengthened with Diffrent Amount of CFRP Composite (탄소섬유복합체로 보강된 RC부재의 보강재 강성에 따른 휨 보강성능)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.129-132
    • /
    • 2006
  • It is generally reported that most of RC beams strengthened with simply bonded FRP composite is failed by FRP debonding. Also, the flexural performance of RC member strengthened with FRP composite can be calculated using the effective strain of FRP. The effective strain as a result of the debonding failure depends on many variables, such as FRP stiffness including the thickness($t_f$) and modulus of elasticity($E_f$), the amount of FRP but the FRP stiffness is reportedly the most influential. The purpose of this paper, therefore, is to examine effects of FRP stiffness on the flexural strengthening of RC beams. 4 different stiffness of CFRP composite including CFRP sheet and laminae were selected. From the tests, it was found that the flexural performance of RC beams strengthened with CFRP composite can be calculated based on the effective strain of the CFRP composite and the effective strain is inversely proportional to the CFRP stiffness.

  • PDF

An Experimental Study to Prevent Debonding Failure of RC Beams Strengthened by GFRP (Glass Fiber Reinforced Polymers) (유리섬유쉬트로 휨보강된 RC보의 부착파괴 방지 상세에 관한 실험적 연구)

  • 최기선;유영찬;이진용;김긍환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.531-536
    • /
    • 2003
  • It is generally known that RC flexural members strengthened by GFRP(Glass Fiber Reinforced Polymers) tend to be failed by premature bond failure near the flexural-shear cracks happened at the mid-span of beams. It is therefore strongly recommended that premature bond failure must be avoided to insure the intended strengthening effects sufficiently. The various methodologies such as increasing bonded length of GFRP and bonding details including U-shape wrappings and epoxy shear-keys are examined in this study. The bonded length of GFRP are calculated based on the assumed bond strengths of epoxy saturating resin. Total six half scale RC beam specimens were constructed and tested to investigate the effectiveness of each methodologies to prevent the bond failure of GFRP. Test results of each specimens are discussed in this paper.

  • PDF

Running safety of high-speed train on deformed railway bridges with interlayer connection failure

  • Gou, Hongye;Liu, Chang;Xie, Rui;Bao, Yi;Zhao, Lixiang;Pu, Qianhui
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.261-274
    • /
    • 2021
  • In a railway bridge, the CRTS II slab ballastless track is subjected to interlayer connection failures, such as void under slab, mortar debonding, and fastener fracture. This study investigates the influences of interlayer connection failure on the safe operation of high-speed trains. First, a train-track-bridge coupled vibration model and a bridge-track deformation model are established to study the running safety of a train passing a deformed bridge with interlayer connection failure. For each type of the interlayer connection failure, the effects of the failure locations and ranges on the track irregularity are studied using the deformation model. Under additional bridge deformation, the effects of interlayer connection failure on the dynamic responses of the train are investigated by using the track irregularity as the excitation to the vibration model. Finally, parametric studies are conducted to determine the thresholds of additional bridge deformations considering interlayer connection failure. Results show that the interlayer connection failure significantly affects the running safety of high-speed train and must be considered in determining the safety thresholds of additional bridge deformation in the asset management of high-speed railway bridges.

A STUDY ON THE ADHESION OF A SOFT LINER CONTAINING 4-META TO THE BASE METAL ALLOY AND ITS VISCOELASTIC PROPERTY

  • Park Hyun-Joo;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.6
    • /
    • pp.732-746
    • /
    • 2003
  • Statement of problem. Soft lining materials, also referred to as tissue conditioning materials, tissue heating materials, relining materials, soft liners or tissue conditioners, were first introduced to dentistry by a plastic manufacturer in 1959. Since the introduction of the materials to the dental field, their material properties have been continually improved through the effort of many researchers. Soft lining materials have become widely accepted, particularly by prosthodontists, because of their numerous clinical advantages and ease of manipulation. Unfortunately, few reports have been issued upon the topic of increasing the bond strength between the base metal alloy used in cast denture bases and PMMA soft liner modified with 4-META, nor upon the pattern of debonding and material change in wet environment like a intra oral situation. Purpose. The purposes of this study were comparing the bond strength between base metal alloy used for the cast denture bases and PMMA soft liner modified with 4-META, and describing the pattern of debonding and material property change in wet environment like the intraoral situation. Material and Methods. This study consisted of four experiments: 1. The in vitro measurement of shear bond strength of the adhesive soft liner. 2. The in vitro measurement of shear bond strength of the adhesive soft liner after 2 weeks of aging. 3. A comparison of debonding patterns. 4. An evaluation the Relation time of modified soft liner. The soft liner used in this study was commercially available as Coe-soft (GC America.IL.,USA), which is provided in forms of powder and liquid. This is a PMMA soft liner commonly used in dental clinics. The metal primer used in this study was 4-META containing primer packed in Meta fast denture base resin (Sun Medical Co., Osaka, Japan). The specimens were formed in a single lap joint desist which is useful for evaluating the apparent shear bond strength of adhesively bonded metal plate by tensile loading. Using the $20{\times}20mm$ transparent grid, percent area of adhesive soft liner remaining on the shear area was calculated to classify the debonding patterns. To evaluate the change of the initial flow of the modified adhesive soft liner, the gelation time was measured with an oscillating rheometer (Haake RS150W/ TC50, Haake Co., Germany). It was a stress control and parallel plate type with the diameter of 35mm. Conclusion. Within the conditions and limitations of this study, the following conclusions were drawn as follows. 1. There was significant increase of bond strength in the 5% 4-META, 10% 4-META containing groups and in the primer coated groups versus the control group(P<0.05). 2. After 2 weeks of aging, no significant increase in bond strength was found except for the group containing 10% 4-META (P<0.05). 3. The gelation times of the modified soft liner were 9.3 minutes for the 5% 4-META containing liner and 11.5 minutes for the 10% 4-META liner. 4. The debonding patterns of the 4-META containing group after 2 weeks of aging were similar to those of immediaely after preparation, but the debonding pattern of the primer group showed more adhesive failure after 2 weeks of aging.

Static and Fatigue Behavior Characteristics of Reinforced Concrete Beams Strengthened with CFRP Plate (CFRP Plate로 보강된 철근콘크리트 보의 정적 및 피로 거동 특성)

  • Kim, Kwang-Soo;Kim, Jin-Yul;Kim, Sung-Hu;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.141-148
    • /
    • 2008
  • In the recent construction industry, Carbon Fiber Reinforced Polymers(CFRPs) have been highly considered as innovative strengthening materials for civil structures due to their superior material properties. This paper is to offer design data and strengthening efficiency of reinforced concrete beams strengthened with CFRP Plate. Static tests were carried out to evaluate failure modes and strengthening capacity. Displacements and strains of steel and CFRP plates were obtained and analyzed through a series of fatigue tests. Also, Those evaluated the energy dissipation. Results of the tests showed increase in strengthening ratios caused debonding failure at the end of beams. For the beams wrapped with CFRP sheets around the end of the plates, debonding failure mode that was induced from flexural cracks was indicated. Through the fatigue tests, it was observed that displacements, strains of steel and CFRP plates converged into certain values. It is also proved that the beams strengthened with CFRP plates are able to resist fatigue loading under serviceability.