• Title/Summary/Keyword: Debinding

Search Result 67, Processing Time 0.026 seconds

Effect of Debinding Conditions on the Microstructure of Sintered Pb(Mg1/3Nb2/3)O3-PbTiO3

  • Yun Jung-Yeul;Jeon Jae-Ho;L.Kang Suk-Joong
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.261-265
    • /
    • 2005
  • In order to fabricate complex-shaped polycrystalline ceramics by sintering, organic binders are usually pre-mixed with ceramic powders to enhance the formability during the shape forming process. These organic binders, however, must be eliminated before sintering so as to eliminate the possibilities of poor densification and unusual grain growth during sintering. The present work studies the effect of binder addition on grain growth behavior during sintering of $92(70Pb(Mg_{1/3}Nb_{2/3})O_3-30PbTiO_3))$-8PbO(mol%) piezoelectric ceramics. The microstructures of the sintered samples were examined for various heating profiles and debinding schedules of the binder removal process. Addition of Polyvinyl butyral(PVB) binder promoted abnormal grain growth especially in incompletely debinded regions. Residual carbon appears to change the grain shape from comer-rounded to faceted and enhance abnormal grain growth.

A Study of Debinding Behavior and Microstructural Development of Sintered Al-Cu-Sn Alloy

  • Kim, J.S.;Chang, I.T.;Falticeanu, C.L.;Davies, G.J.;Jiang, K.C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.722-723
    • /
    • 2006
  • A new method has been developed to fabricate microcomponents by a combination of photolithography and sintering of metallic powder mixtures, without the need for compression and the addition of Mg. This involves (1) the fabrication of a micromould, (2) mould filling of the powder/binder mixture, (3) debinding and (3) sintering. The starting powdered materials consisted of a mixture of aluminium powder(average size of 2.5 um) and alloying elemental powder of Cu and Sn(less than 70nm), at appropriate proportions to achieve nominal compositions of Al-6wt%Cu, Al-6wt%Cu-3wt%Sn. This paper presents detailed investigation of debinding behaviour and microstructural development.

  • PDF

Effect of Residual Carbon on the Microstructure Evolution during the Sintering of M2 HSS Parts Shaping by Metal Injection Moulding Process

  • Herranz, G.;Levenfeld, B.;Varez, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.225-226
    • /
    • 2006
  • In this present investigation, Metal Injection Moulding (MIM) of M2 High Speed Steel (HSS) parts using a wax-High Density Polyethylene (HDPE) binder is shown. The elimination of organic binder was carried out by thermal debinding under inert atmosphere. In order to keep carbon in the sample that could improve the sintering process, incomplete debinding was performed between 450 and $600^{\circ}C$. The specimens were sintered at temperatures between 1210 and $1280^{\circ}C$ in high vacuum atmosphere, obtaining the 98% of the theoretical density. In the samples with higher residual carbon content, the sintering window was extended up to 20 degrees and the optimum temperature was lower.

  • PDF

Manufacture of Permalloy Soft Magnets by Powder Injection Molding

  • W.Y. Jeung;Park, J.W.
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.13-18
    • /
    • 2001
  • Permalloy soft magnets have been produced by the powder injection molding process. Rheological characteristics of mixtures, debinding conditions, and the magnetic properties of permalloy after sintering have been investigated. A permalloy soft magnet with a permeability of 14200 could be obtained by preparing a mixture with a powder loading of 65.4 vol % and a PP/PEG binder systems solvent extraction, thermal debinding, and subsequent sintering at 1350$\^{C}$ in hydrogen. The permalloy soft magnet sintered in hydrogen had 95% of theoretical density and a magnetic induction of 13.2 kG in an applied magnetic field of 50 Oe.

Rapid Debinding of Low Pressure Injection Molded Parts by Wicking and Subsequent Thermal Pyrolysis (위킹 및 후속 열분해 탈지에 의한 저압 사출제의 가속탈지)

  • 최인묵;김민기;김상우;이해원;송휴섭;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.635-639
    • /
    • 1998
  • When the low pressure injection molded parts are debinded by wicking and subsequent thermal pyrolysis the optimum transition point from wicking to thermal pyrolysis is just after the completion of the constant wicking rate period. Even when the partially debinded parts were heated at 5$^{\circ}C$/min after reaching the 1st falling rate period the debinding defects such as distortion and cracks were not found.

  • PDF

Manufacturing of the Permalloy Soft Magnet by Powder Injection Molding Process

  • W. Y. Jeung;Park, J. W.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.217-227
    • /
    • 2000
  • The permalloy soft magnet was produced by powder injection molding process. Rheological characteristics of mixtures, debinding conditions and the magnetic properties of permalloy after sintering ware investigated. The permalloy soft magnet with a permeability of 14200 could be obtained by preparing a mixture with a powder loading of 65.4 vol.% and PP/PEG binder system, solvent extraction, thermal debinding and subsequent sintering at 1350 $^{\circ}C$ in hydrogen. The permalloy soft magnet sintered in hydrogen showed a 95 % of theoretical density and a magnetic induction of 13.2 kG at the applied magnetic field of 50 Oe

  • PDF

A Study on Injection Moldability of a Ceramic Material (세라믹재료의 사출성형성에 대한 연구)

  • 나병철;윤재륜;오박균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.54-71
    • /
    • 1990
  • The fabrication of ceramic machine components by injection molding(CIM : Ceramic Injection Molding) is critically dependent on the shaping and binder extraction techniques. Injection molding is of keen interest to ceramic industries because CIM is suitable for making an intricate shape and manufacturing cost is lower than other process when production scale is large. The success of the molding process is dependent on the correct formulation of the organic vehicle and the achievement of optimum filler loading. Fine alumina powders and polyethylene binder systems were employed to prepare moldable blend then produce a simple specimen by compression molding. Flow characteristics of the mixture was evaluated by viscosity measurement. Optimum binder system and ceramic volume loading for injection molding were determind. A good debinding technique was utilized to improve the quality of debinded parts and save the debinding time. The simple ceramic part was successfully sintered after debinding and its microstructure examined with SEM revealed good consolidation.

A Study on the Process Capability Analysis of MIM Product (금속분말 사출성형 제품의 공정능력분석에 관한 연구)

  • Choi, Byung-Ky;Lee, Dong-Gil;Choi, Byung-Hui
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.57-64
    • /
    • 2010
  • Metal Injection Molding (MIM) is attractive because it produces consistent, complex-geometry components for high-volume, high-strength, and high-performance applications. Also MIM using in optical communication field, display field, and semi-conductor field is a cost-effective alternative to metal machining or investment casting parts. It offers tremendous single-step parts consolidation potential and design flexibility. The objective of this paper is to study the suitability of design, flow analysis, debinding and sinterin processes, and capability analysis. The suitable injection conditions were 0.5~1.5 second filling time, 11.0~12.5 MPa injection pressure derived from flow analysis. The gravity of the product is measured after debinding an sintering. The maximum and minimum gravity levels are 7.5939 and 7.5097. the average and standard deviation are 7.5579 and 0.0122; when converted into density, the figure stands at 98.154%. According to an analysis of overall capacity, PPM total, which refers to defect per million opportunities(DPMO), stands at 166,066.3 Z.Bench-the sum of defect rates exceeding the actual lowest and highest limits-is 0.97, which translates into the good quality rate of around 88.4% and the sigma level of 2.47.

Effect of Residual Impurity on Magnetic Properties of the Permalloy Soft Magnet by Powder Injection Molding (분말사출성형으로 제조된 퍼말로이 연자성체에서 잔류 불순물이 자기특성에 미치는 영향)

  • 정원용;최준환;정우상
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.6
    • /
    • pp.291-296
    • /
    • 2000
  • The manufacturing method of permalloy soft magnet with the Ni contents of 46.6 and 47.2 wt% was investigated by powder injection molding technology. The magnetic properties of permalloy were greatly affected on the residual carbon and oxygen content of the sintered magnet. Solvent extraction and thermal debinding process to minimize the residual carbon content in sintered magnet were developed by controlling the debinding atmosphere. The residual carbon content depends on the debinding condition of the binder system for powder injection molding and the residual oxygen content on the sintering atmosphere. The sintered magnet produced by powder injection molding process had a 50 ppm. residual carbon, 150 ppm. residual oxygen. The coercivity and maximum relative permeability of permalloy soft magnet were 0.46 Oe and 14,600 respectively.

  • PDF