• Title/Summary/Keyword: Dean number

Search Result 53, Processing Time 0.032 seconds

A Study on the Influence of Centrifugal Force for Flow Characteristics in Square-sectional Air Duct (정방형 공기덕트 내부의 유동특성에 원심력이 미치는 영향에 관한 연구)

  • Bong, Tae-Keun;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.455-460
    • /
    • 2012
  • In this paper, an experimental and numerical investigation of transition characteristics in a square-sectional curved duct flow under Centrifugal force is presented. The experimental study is carried out to measure axial velocity profiles by using Laser Doppler Velocimeter (LDV) system. Computational fluid dynamic (CFD) simulation was performed using the commercial CFD code FLUENT to investigate the transition characteristics. The flow development is found to depend upon Dean number and curvature ratio. The velocity profiles in center of the duct have lower value than those of the inner and outer walls because of the centrifugal forces.

Numerical Simulation of Beach Profile Changes (해빈 종단면 변형의 수치모의)

  • Cheon, Se-Hyeon;Ahn, Kyung-Mo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.101-109
    • /
    • 2008
  • Several numerical models for predicting beach profile changes have been developed by many researchers. Many of the earlier models are known to simulate the erosional profiles with the formation of offshore bar. However, most of the models don't have proper mechanism to incorporate the recovery process of the eroded profiles after a storm and can not simulate the beach accretion with acceptable accuracy. In order to overcome these shortcomings, we propose a new numerical model which has new features to simulate the accretional phase of beach recovery process after storm including such as redistribution of suspended sand particles near the breaking point. The simulation results of the proposed model were compared with LWT (Large Wave Tank) experiments performed at CRIEPI (Central Research Institute of Electric Power Industry in Japan) and CE (the Us Army Corps of Engineers) and it was shown to have performed better compared to SBEACH (Storm-induced BEAch CHange).

Pressure Drop in a Helical Square Duct (나선형 사각덕트 내의 압력강하)

  • Ryu, Seung-Yeob;Yoon, Juh-Yeon;Lee, Doo-Jeong
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.398-403
    • /
    • 2001
  • Pressure drop at a helical square duct orifice is numerically evaluated. The orifice is installed at the entrance of a once-through steam generator tube to suppress flow instabilities. The calculated results are compared with the available experimental correlations, and showed good agreement. Effects of curvature ratio and characteristics of the secondary flow with Reynolds number are reported. Through the numerical simulations, pressure drop mechanisms were well understood inside the compact and complicated orifice geometry.

  • PDF

Numerical Model for Cross-Shore Sediment Transport (해안선 횡방향의 표사이동 예측모형)

  • 이철응;김무현
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.57-69
    • /
    • 1995
  • The development of a finite difference model for cross-shore sediment transport prediction in the surf tone due to the storm surge event is presented in this paper. Using the inhomogeneous diffusion equation with moving boundaries. the present numerical model is found to be robust and efficient and does not possess a number of restrictions imposed in Kriebel and Dean's(1985) numerical model. Our numerical model is validated through comparison with the analytical solution. the data of a large-scale experiment and the field data of Hurricane Eloise. The Present model if able to predict the averaged volumetric erosion rate of a beach due to the time-varying real storm surge hydrographs and satisfies the conservation of sediment between eroded volume in the onshore region and deposited volume in the offshore region. In addition. the present model is able to reasonably predict the recession of a beach with wide berm and dune. and can describe the change of a breaking point by the offshore deposition. From the sensitivity analysis or the present numerical model with various input parameters, it is concluded that the present numerical model is able to analyze the beach change in a reliable manner including the effects of different sizes of sediments.

  • PDF

A Numerical Study on the Similarity of Laminar Flows in Orthogonally Rotating Rectangular Ducts and Stationary Curved Rectangular Ducts of Arbitrary Aspect Ratio (임의의 종횡비를 가지는 수직축을 중심으로 회전하는 직관과 정지한 고고간 내부의 층류 유동의 유사성에 관한 수치적 연구)

  • Lee, Gong-Hee;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.842-849
    • /
    • 2002
  • The present study showed that a quantitative analogy of the fully developed laminar flows inorthogonally rotating rectangular ducts and stationary curved rectangular ducts of arbitrary aspect ratio could be established. In order to clarify the similarity of the two flows, the dimensionless parameters $K_{LR}$ =Re/√Ro and Rossby number Ro= $w_{m}$/$\Omega$d in a rotating strait duct were used as a set corresponding to Dean number $K_{LC}$ =Re/√λand curvature ratio λ=R/d in a stationary curved duct. Under the condition that the value of Rossby number and curvature ratio was large enough, the flow field satisfied the ‘asymptotic invariance property’: there were strong quantitative similarities between the two flows such as friction factors, flow patterns, and maximum axial velocity magnitudes for the same values of $K_{LR}$ and $K_{LC}$ .

Sufficient Conditions for Compatibility of Unequal-replicate Component Designs

  • Park, Dong-Kwon
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.2
    • /
    • pp.513-522
    • /
    • 1994
  • A multi-dimensional design is most easily constructed via the amalgamation of one-dimensional component block designs. However, not all sets of component designs are compatible to be amalgamated. The conditions for compatibility are related to the concept of a complete matching in a graph. In this paper, we give sufficient conditions for unequal-replicate designs. Two types of conditions are proposed; one is based on the number of verices adjacent to at least one vertex and the other is ona a degree of vertex, in a bipartite graph. The former is an extension of the sufficient conditions of equal-replicate designs given by Dean an Lewis (1988).

  • PDF

Triangle Method for Fast Face Detection on the Wild

  • Malikovich, Karimov Madjit;Akhmatovich, Tashev Komil;ugli, Islomov Shahboz Zokir;Nizomovich, Mavlonov Obid
    • Journal of Multimedia Information System
    • /
    • v.5 no.1
    • /
    • pp.15-20
    • /
    • 2018
  • There are a lot of problems in the face detection area. One of them is detecting faces by facial features and reducing number of the false negatives and positions. This paper is directed to solve this problem by the proposed triangle method. Also, this paper explans cascades, Haar-like features, AdaBoost, HOG. We propose a scheme using 12-net, 24-net, 48-net to scan images and improve efficiency. Using triangle method for frontal pose, B and B1 methods for other poses in neural networks are proposed.

An Efficient Horizontal Maintenance Technique for the Mobile Inverted Pendulum (모바일 역진자의 효율적 수평유지 기법)

  • Yun, Jae-Mu;Lee, Jae-Kyoung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.656-663
    • /
    • 2007
  • A new dynamic balancing algorithm has been proposed to minimize the number of sensors necessary for the horizontal balancing of the mobile inverted pendulum while maintaining the same level of the commercial performance. The inverted pendulum technique is getting attention and there have been many researches on the Segway since the US inventor Dean Kamen commercialized. One of the major problems of the Segway is that many sensors are required for the control of the Segway, which results in the high price. In this research, a single gyro and a tilt sensor are fused to obtain the absolute tilt information, which is applied for the control of the mobile inverted pendulum. A dynamic balancing technique has been developed and applied for a robust control system against disturbances. The intelligent handling and stable curving of the Segway as a next generation mobile tool are verified with a human loading.

The effect of the curvature of pipe on the thermal-flow field (곡관의 곡률이 열유동장에 미치는 영향)

  • Kim, Sung-Joon;Hyun, Sung-Ho;Hong, Jin-Gi;Min, In-Hong
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.261-268
    • /
    • 1999
  • It is a main object to find out the effect of curvature of pipe on the thermal flow field in copper pipe. the toroidal coordinate system is chosen for this project. 3-D numerical works are done by a commercial code, PHOENICS. The flow and temperature field are simulated and analysed on the view point of variation of pressure and temperature with Dean number. The results show that the strong recirculation phenomena and secondary flow are established and then a lot of pressure drop along main flow direction occurs at the curved portion of pipe and the temperature variation has a reversed trend of pressure variation along the axis of pipe.

  • PDF

HEAT/MASS TRANSFER CHARACTERISTICS IN ROTATING TWO-PASS SQUARE CHANNELS WITH $90^{\circ}$RIBS ($90^{\circ}$요철이 설치된 회전하는 정사각 이차 유로에서의 열/물질전달 특성)

  • Kim, Kyung-Min;Kim, Sang-In;Kim, Yun-Young;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.436-441
    • /
    • 2003
  • The present study investigates heat/mass transfer characteristics in rotating two-pass ducts of three different aspect ratios with 90-ribbed surfaces. The results show that the flows generated by the 180-turn, rib turbulators, and duct rotation. The curvature of the 180-turn produces Dean vortices causing high heat/mass transfer in the turning region and in the upstream region of the second-pass. The rib turbulators disturb the main flow by producing reattachment and separation near the ribbed surfaces, and increase heat/mass transfer in the region between the ribs. As the rotation number increases, the heat/mass transfer discrepancy between the leading and the trailing surfaces become larger.

  • PDF