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ABSTRACT

A multi-dimensional design is most easily constructed via the amal-
gamation of one-dimensional component block designs. However, not
all sets of component designs are compatible to be amalgamated. The
conditions for compatibility are related to the concept of a complete
matching in a graph. In this paper, we give sufficient conditions for
unequal-replicate designs. Two types of conditions are proposed; one is
based on the number of vertices adjacent to at least one vertex and the
other is on a degree of vertex, in a bipartite graph. The former is an
extension of the sufficient conditions of equal-replicate designs given by
Dean and Lewis (1988).
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1. INTRODUCTION

Multi-dimensional designs are designs for experiments involving two or
more crossed, non-interacting blocking factors. We restrict attention to exper-
iments with v treatments, and one treatment is observed at each combination
of levels of the blocking factors. Geometrically, a multi-dimensional design
with d blocking factors having by, b,,. .., by levels can be represented by a d-
dimensional lattice with each dimension representing a blocking factor, thus
producing []%, b; nodes with one treatment label at each nodes.

Two dimensional designs are better known as row-column designs and many
results, Latin square designs being the simplest case, exist in the literature
in their construction and properties. Two series of designs based on Latin
cubes for experiments in three crossed blocking factors are given by Preece,
Pearce and Kerr (1973) who point out their usefulness for experiments in the
food industry. Youden hyperrectangles (Cheng, 1979) are multi-dimensional
designs which are analogues of generalized Youden designs.

When an experiment cannot be accommodated by the designs available
in the literature, a suitable design must be constructed by the experimenter.
A multi-dimensional design with d blocking factors having by, b,, ..., by lev-
els is most easily constructed via the amalgamation of one-dimensional block
designs, where the i-th design has b; blocks, 7 = 1,2,...,d. These one-
dimensional designs are called the component designs. The i-th component
design can be recovered from the multi-dimensional design by ignoring all
blocking factors except for the i-th. Not all sets of one-dimensional designs
are able to be amalgamated, as shown by Freeman (1957). If d component
designs can be amalgamated into a multi-dimensional design, they are called
compatible. Dean an Lewis (1988) present sufficient conditions for compatibilty
of component designs which each of the treatment labels occurs r times.

In this paper, we give sufficient conditions for compatibility of unequal-
replicate component designs (i.e., each of the treatment labels occurs a different
number of times in the design). The conditions for compatibility are related

to the concept of a complete matching in a graph. Two types of conditions
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are proposed; one is based on the number of vertices adjacent to at least
one vertex and the other is on a degree of vertex, in a bipartite graph. The
former is modified from the sufficient conditions which are given by Dean and
Lewis (1988) (the conditions contain incorrect parts ; see Remark 1 for detail)
and extended to unequal-replicate designs from equal-replicate designs. The

conditions are rather easy to check in practice.

2. DEFINITIONS AND RESULTS

Next paragraph contains a short summary of definitions and well-known
results from the theory of graphs which will be useful for stating and proving
the results to follow.

A graph is an ordered pair G = (V; E) where V is a finite sets of vertices
and E edge set. An edge e = {v1,v2} € E is called incident to v; and v,, the
vertices v; and vy are called adjacent. If an edge joines vertex to itself, the
edge is called loop. The degree of vertex v, d(v), is the number of two-element
edges that touch v plus twice the number of loops that touch v. An open walk
is a path if all vertices are distinct. G* = (V4, Va; F) is a bipartite if the set of
vertices V can be partitioned into V; and V, with V1 NV, = @ | such that each
edge in F is incident to one vertex in Vi and one vertex in V,. A matching
in G* is a set M of edges of G* with no common vertices. A matching M in
G* is complete if every z € V; is matched. The Konig-Hall Marriage Theorem
(see Wilson (1979), Theorem 25A) is well-known for existence of a complete
matching. The condition of the Marriage Theorem is rather difficult to check.

A simple lemma is proposed.

Lemma 2.1. If there exists k > 1 such that d(z) > k& > d(y) for all
z € Vi,y € V, in the bipartite graph G* = (14, V,; E), then there exists a

complete matching.

Now, let’s translate from our compatibility problem into graphical prob-

lem. Consider a set of d component designs with v treatinent labels, T', each
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observed r;(z = 1,...,v) times and let B;,, be the set of treatment labels in
block z; of the i-th component designs (7 < a; < b4 = 1,...,d). Let 7s have
h (1 < h <wv) different values and let r(p) be the p-th (p = 1,..., h) smallest
values of r;. Then a set of d component designs have a common set of n(p)
treatment labels replicate r(p) times and the design consist of d block designs
such that j-th design has b; blocks of size [ZZ:I r(p)n(p)] /b5 =1,....d).
Let n;(t,z;) denotes the number of times that treatment label ¢ (t =
L....,v)occurs in By, (¢ < a; < by, 1 = 1,...,d). The block-intersection
I{(z) = Bz, N By, N -+ N By, consists of n(t,z) = [I; n:(t, x;) replicates of
each treatment label t € T. Let Y = {z; z, ... z4}, then z € Y represents a
selection of blocks, one from each component design. Construct the bipartite
graph G™ = (W1, Vo; E), where V} contains 3, r(p)n(p) vertices representing
the r; (or Zzzl r(p)) occurrence of the v (or Zzzl n(p)) treatment labels and
Vi contains []; b; vertices representing the nodes of the d-dimensional lattice
(i.e. Vo2 =Y). The existence of a complete matching from V; to V; does not
guarantee compatibility of the component designs. However, repeated deletion

of a replicate of treatments leads to the compatibility.

3. SUFFICIENT CONDITIONS

Let t,, denote the g-th treatment that has replicate r(p) (¢ = 1,...,n(p),p =
L...;hyh <053, n(p) = v) and T,(,) denote the set of treatment labels which
have replicate r(p), i.e., T;(;) = {tpq;¢ = 1,...,n(p)}. The next results, The-
orem 3.1 and 3.2, give sufficient conditions to unequal replicate designs. If a
theorem is satisfied, for the first step, we can delete a single replicate of the
treatment labels 7'(;) from each component design together with a deletion of
1 Tq ... T4 from Y when T(ny 1s deleted from By,,, Bar,, - . -, By.,. Next, if
possible, we can also delete a single replicate of the treatment labels Tr(hy-1
and assign them to the nodes of the d-dimensional lattice. Whenever possible,

we can continue this way.
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After deleting some replicates of the treatment labels and assigning them to
the nodes of the d-dimensional lattice, each nodes can be filled or already filled
for the remaining parts of the component designs. Define F} to be an indicator
function which takes the value 0 if the node z € Y is already filled, and F, =1
otherwise. During the deletion process, F, = 0 means that the corresponding
node r € Y is already filled and cannot be assigned anymore. Define m;(t, z;)
to be an indicator function which takes the value 1 if n;(¢,2z;) > 1, that is

treatment label t occurs at least once in block B;,,. and m;(t, ;) = 0 otherwise.

Theorem 3.1. Let M,(p) = Y ,cv, Fu [T, mi(t, z;), where t € Ty (). If
min M(h) > n(h), (3.1)

a deletion can be made of a single replicate of the treatment labels T4y from
each component design together with a deletion of the corresponding z € Y,
where r(h) is the largest value of r; for the remaining replicates after deleting

some replicates and n(h) is the largest value among n(p) where p =1,2,...,h.

Proof. Construct the bipartite graph Q(V3, V2; E), subgraph of G*, where
V3 contains n(h) vertices representing a single replicate of the treatment labels

t € Ty(ny. Let [Ng(5)| denote the number of vertices in V; which are collectively
adjacent to all t € S(S C V3). If S = {¢t}, we write |No(S5)| = |Ng(t)|. Now,

INo(t)| = > Fe [T ma(t, zi). (3.2)

z€V, 1
Therefore, using the equation (3.2), |Ng(S)| > min; |Ng(t)| = min, M;(h) for
all S C V3. If min; My(h) > n(h), it follows that [Ng(S)| > min, M,(h) >
n(h) = |V3| > |S| for all S C V3. From the Konig-Hall Theorem, there exists
a complete matching from the vertices V3 to a subset of the vertices of V;,
and if ming M;(h) > n(h), deletion stated in the theorem can be therefore be

achieved.

Define ¢;(t) is the number of blocks in the :-th component designs that

contain at least one replicate of treatment t € T,y and define Pi(h) =
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T ¢:(t) — ( ¢ b — ZFT) Here, numbers of (H?:l b; — ZFT) means that
the vertices which is already filled in Y. In practice, the following conditions

are rather easier to check than that of Theorem 3.1.
Corollary 3.1. If
mtin P,(h) > n(h), . (3.3)
a deletion can be made of a single replicate of the treatment labels T from the

remaining parts of each component design.

Proof. The equation min, M;(h) > min, P,(k) holds from ¢;(t) = 3 mi(t, x;)
where the sum is over z; = 1,...,b;, even though the treatment ¢ which min-
imize M;(h) does not necessarily the same as ¢ of min, P,(h), where t € T (n)
and the proof follows.

Corollary 3.2. At some stage, suppose r; =ry = --- =7, = r. Then, in
the equation (3.1), p=1, ¢ =v, h =1 and n(h) = v. Thus, if
min M;(1) > v (3.4)

a deletion can be made of a single replicate of the treatment labels 7" from the

remaining parts of each component design.

Remark 1. Note that M;(h) < TJ; ¢:(¢). The equality only holds for the
first deletion step (i.e., all F,, = 1). The equation sayes that some sufficient
conditions given by Dean and Lewis (1988; Theorem 2.2 and Corollary 2.2)

are incorrect and should be modified.
Theorem 3.2. Let Uy(p) = X, Fen(t,z), where t € T, ). If
min Uy(h) > max F.|I(z) (3.5)
a deletion can be made in such a same way in Theorem 3.1.

Proof. If ¢t € V3, then the edge set E contains the edge (¢,z) with
frequency Fyn(t,z), since z € Y appears in F, times in Vo. And the degree of

the vertex © € Y is [/(2)]. From lemma 2.1, the proof is completed.
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In practice, Theorem 3.1 and 3.2 could be combined in way of easiness for
applying. In applying Theorem 3.1 and 3.2, the deletion should be carried out
in such a way that degrees of vertices in V., |I(2)|, are independent of z for

all z € Y in order to minimize the maximum of F,|I(z)|.

4. AN EXAMPLE

We shall now illustrate this procedure by an example. We take two com-

ponent designs with 4 treatments as follows.

B11 00 0 01 2 Bgl 01 2 3
312 0 01 2 2 3 B22 01 2 3
Bz : 00 2 2 3 3 Bas 01 2 3
By 01 2 33 3 Bay 0 0 0 3
B25 : 0 2 3 3
326 0 0 2 2

Treatment label 0 occurs 9 times, label 1 occurs 3 times and label 2, 3 occur 6
times, so that r(1) = Lst smallest [9,3,6] = 3, r(2) = 2nd smallest [9,3,6] = 6
and 7(3) = 3rd smallest [9,3,6] = 9 and n(1) = 1, n(2) = 2 and n(3) = L.
Since T3y contains only the treatment label ¢ = 0 and F, =1 for allz €Y
and

M,(3) = P,(3) = q1(0) x ¢2(0) = 4 x 6 = 24 > 1 = n(3).

From the equation (3.1), an assignment of treatment label 0 to the node of the

lattice can be made as shown below.

We can see that 0 is deleted from Bj; and Bys. For next step, since F, = 0 if
z = 14 and F, = 1 otherwise and h = 3,

M,3) =P,(3) = q1(0) x 2(0) =1 =4 x 6 =1 =23>1 =n(3)
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and therefore the Corollary 3.2 guarantees that a further assignment of the
treatmemt 0 which is deleted from By, and B,4 can be made to the remaining

nodes of the lattice as follows.

Similarly, another assignment of 0 is possible since P,(3) = 22 > 1 = n(3) to

the node = 34. Then, the remaining parts of the component designs are

Bn 0001 2 By o 0 2 3
B]2 01 2 2 3 B22 01 2 3
Bz : 02 2 3 3 By 0 0 2 3
Bl4 01 2 3 3 3 B24 : 3
325 0 2 3 3
BQG 00 2 2

Now, h = 2 and T,y = {t = 0,2,3}. We can verify that the condition
in Corollary 3.2 met since ¢;(3) x ¢2(3) = 3 x 5 = 15 and ¢:(0) x ¢(0) =
q1(1) X ¢2(1) = 4 x5 = 20 and so min, P,(3) = 15— 3 = 12 > 3 = n(2).
Therefore, an assignment of one copy of each of the treatment label 0, 2 and

3 to nodes of the lattice as follows.

(el e aw)
Lo .
[N}

We can continue to use the condition of Corollary 3.2 until all remaining treat-
ment have same replicates 3 times and the partially completed design and the

remaining parts of the component designs are following.

0 00
0 20
0 3 2
3 3 2
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By 01 2 By 01 2 3
By, 1 23 Ba, 01 2 3
B3 0 2 3 B3 01 2 3
By 01 3

—

I

It can be verified that |I(x 34 for all remaining z € Y. Theorem 3.2 can

be used since
min U(l) =U(1) =9 forallt e Ty
> max |[{(z)| =3 =|I(z)| for all remaining z € Y.

The partially completed design and the remaining parts of the component

designs are following.

By o1 2 By, 0123
By, 2 3 Bas 01 2 3
Bis : 0 3
Bl4 01
0 0 00
1 0 20
2 0 3 2
3 3 3 2
By using the Theorem 3.2 two more times, we can do the entire assignment as
follows.
01 2000
123020
23003 2
3 01 3 3 2
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