• Title/Summary/Keyword: Deadzone compensation

Search Result 6, Processing Time 0.023 seconds

Deadzone compensation of a XY table using fuzzy logic (XY 테이블의 퍼지 데드존 보상)

  • 장준오
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.2
    • /
    • pp.17-28
    • /
    • 2004
  • A deadzone compensator is designed for a XY positioning table using fuzzy logic. The classification property of fuzzy logic systems makes them a natural candidate for the rejection of errors induced by the deadzone, which has regions in which it behaves differently. A tuning algorithm is given for the fuzzy logic parameters, so that the deadzone compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded parameter estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The fuzzy logic deadzone compensator is implemented on a XY positioning table to show its efficacy.

Deadzone Compensation of Positioning Systems using Fuzzy Logic

  • Minkyong Son;Jang, Jun-Oh;Lee, Pyeong-Gi;Park, Sang-Bae;Ahn, In-Seok;Lee, Sung-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.102.4-102
    • /
    • 2002
  • A deadzone compensator is designed for a positioning system using fuzzy logic. The classification property of fuzzy logic systems make them a natural candidate for the rejection of errors induced by the deadzone, which has regions in which it behaves differently. A tuning algorithm is given for the fuzzy logic parameters, so that the deadzone compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded parameter estimates, formal nonlinear stability proofs are given to show that the tracking error is small. The fuzzy logic deadzone compensator is implemented on a positioning system to show its efficacy. 1. Deadzone Compansation 2. XY positioning table 3. Fuzzy Logic 4. Actuator nonlinearity

  • PDF

FL Deadzone Compensation of a Mobile robot (이동로봇의 퍼지 데드존 보상)

  • Jang, Jun Oh
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.191-202
    • /
    • 2013
  • A control structure that makes possible the integration of a kinematic controller and a fuzzy logic (FL) deadzone compensator for mobile robots is presented. A tuning algorithm is given for the fuzzy logic parameters, so that the deadzone compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded parameter estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The fuzzy logic deadzone compensator is implemented on a mobile robot to show its efficacy.

NN Saturation and FL Deadzone Compensation of Robot Systems (로봇 시스템의 신경망 포화 및 퍼지 데드존 보상)

  • Jang, Jun-Oh
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.187-192
    • /
    • 2008
  • A saturation and deadzone compensator is designed for robot systems using fuzzy logic (FL) and neural network (NN). The classification property of FL system and the function approximation ability of the NN make them the natural candidate for the rejection of errors induced by the saturation and deadzone. The tuning algorithms are given for the fuzzy logic parameters and the NN weights, so that the saturation and deadzone compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded parameter estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The NN saturation and FL deadzone compensator is simulated on a robot system to show its efficacy.

  • PDF

A Study on the Adaptive Friction Compensator Design of a Hydraulic Proportional Position Control System (유압 비례 위치제어시스템의 적응 마찰력 보상기 설계에 관한 연구)

  • 이명호;박형배
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.77-83
    • /
    • 2003
  • This paper deals with a position control problem of a hydraulic proportional position control system using a nonlinear friction compensation control. As nonlinear friction, stiction and coulomb friction forces are considered and modeled as deadzone and external disturbance respectively. In order to compensate this nonlinearities, we designed the controller which is the adaptive friction compensator using discrete time Model Reference Adaptive Control method in this paper. Digital Signal Processing board is employed for data acquisition and manipulation. The experimental results show that response is slow and steady-state error cannot be compensated properly without friction compensation but this compensator is effective to obtain fast response and good steady-state response.

Trajectory Tracking Control of a Boom.Arm System of Hydraulic Excavator Using Disturbance Observer (외란관측기를 이용한 유압굴삭기 붐.아암 시스템의 궤적추적제어)

  • Cho S.H.;Ahn G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • This paper deals with the issue of trajectory tracking control of a hydraulic excavator using disturbance observer in order to compensate external disturbances occuring from coupling between attachment, asymmetry of a single rod cylinder, and deadzone of main control valve. Disturbance compensation control system with disturbance observer has been constructed for the boom and arm respectively. Simulation results were compared with experimental results to validate the computer simulation system of hydraulic excavator itself. Computer simulation shows that disturbance compensation control is effective for compensating system nonlinearity and thus improves positioning accuracy and trajectory tracking performance. Steady state error has been decreased by adding PI controller to this control scheme.

  • PDF