• Title/Summary/Keyword: Dead time control

Search Result 332, Processing Time 0.035 seconds

The Analysis and Compensation of Dead Time Effects in a Vector-Controlled Induction Machine (벡터 제어 유도 전동기의 데드 타임 효과 해석 및 보상)

  • Kim, Seong-Hwan;Ryoo, Young-Jae;Chang, Young-Hak
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.225-232
    • /
    • 2000
  • Dead time which is inserted in PWM signals of VSI distorts the inverter output voltage waveforms and deteriorate the control performance of an induction machine by producing torque ripples. In this paper, dead time compensation method in a vector controlled induction machine is proposed. The method is based on a feedforward approach that compensates dead time effect by adding the compensating voltages to the inverter output voltage references in 2 phase stationary frame. The proposed method is only software intensive and easy to realize without additional hardware. The experimental results show the validity and effectiveness of the proposed method.

  • PDF

Efficiency Improvement of Synchronous Boost Converter with Dead Time Control for Fuel Cell-Battery Hybrid System

  • Kim, Do-Yun;Won, Il-Kuen;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1891-1901
    • /
    • 2017
  • In this paper, optimal control of the fuel cell and design of a high-efficiency power converter is implemented to build a high-priced fuel cell system with minimum capacity. Conventional power converter devices use a non-isolated boost converter for high efficiency while the battery is charged, and reduce its conduction loss by using MOSFETs instead of diodes. However, the efficiency of the boost converter decreases, since overshoot occurs because there is a moment when the body diode of the MOSFET is conducted during the dead time and huge loss occurs when the dead time for the maximum-power-flowing state is used in the low-power-flowing state. The method proposed in this paper is to adjust the dead time of boost and rectifier switches by predicting the power flow to meet the maximum efficiency in every load condition. After analyzing parasite components, the stability and efficiency of the high-efficiency boost converter is improved by predictive compensation of the delay component of each part, and it is proven by simulation and experience. The variation in switching delay times of each switch of the full-bridge converter is compensated by falling time compensation, a control method of PWM, and it is also proven by simulation and experience.

Construction of a robust dead beat control system considered a transient response

  • Yoshida, Satoru;Kamiya, Yuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.106-109
    • /
    • 1995
  • First, in this paper we propose a new dead best control system design technique by which we can specify a transient response before the settling time. Though the resultant system has the same system configuration as Reference[1], that is realized by adapting the performance index which includes the term of the square of difference between specified and pracitical responses. Next, we state a technique which gives the dead beat control system robustness and construct a robust dead beat control system. Simulations of the proposed dead beat control and robust dead beat control systems show expected results.

  • PDF

A Study on the Novel Space Vector PWM Inverter without Dead time (데드 타임 없는 새로운 공간 벡터 전압 변조 인버터에 관한 연구)

  • Seo Il-Soo;Song Eui-Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1169-1171
    • /
    • 2004
  • Voltage source inverters are required dead time to prevent the short current in the dc link. In recent years, the dead time effect has been investigated in many literatures. This paper presents on the novel space vector PWM inverter without dead time. The proposed inverter don't need to sense load current and to calculate for dead time compensation. Transformers are inserted each leg in the proposed inverter. The proposed method is analyzed each mode and then the simulation results verify the proposed method.

  • PDF

Controller Design and Stability Analysis of Affine System with Dead-Time (불감시간을 갖는 Affine 시스템의 안정도 해석과 제어기 설계)

  • Yang Hai-Won;Byun Hwang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.93-102
    • /
    • 2005
  • The Nyquist robust stability margin is proposed as a measure of robust stability for systems with Affine TFM(Transfer Function Matrix) parametric uncertainty. The parametric uncertainty is modeled through a Affine TFM MIMO (Multi-Input Multi-Output) description with dead-time, and the unstructured uncertainty through a bounded perturbation of Affine polynomials. Gershgorin's theorem and concepts of diagonal dominance and GB(Gershgorin Bands) are extended to include model uncertainty. Multiloop PI/PID controllers can be tuned by using a modified version of the Ziegler-Nichols (ZN) relations. Consequently, this paper provides sufficient conditions for the robustness of Affine TFM MIMO uncertain systems with dead-time based on Rosenbrock's DNA. Simulation examples show the performance and efficiency of the proposed multiloop design method for Affine uncertain systems with dead-time.

On-Line Feed-Forward Dead-Time Compensation Method (온라인 전향 데드타임 보상기법)

  • 김현수;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.267-274
    • /
    • 2004
  • In this paper, a new on-line dead-time compensation method is proposed. The output voltage errors due to the dead-time effect is considered as disturbance voltages. The magnitude of the disturbance voltages is estimated using a time delay control technique and the disturbance voltages are calculated using the estimated values, measured currents, and position information. The calculated disturbance voltages are fed to voltage references in order to compensate the dead-time effect. The proposed method is applied to a PM synchronous motor drive system and implemented in a digital manner using a digital signal processor (DSP) TMS320C31. The experiments are carried out for this system to show the effectiveness of the proposed method and the results show the validity of the proposed method.

Robust 2 D.O.F. Controller for the Precesses with dead-time (시간지연을 갖는 프로세서의 견실한 2자유도 제어기)

  • 최주용;배종일;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.319-319
    • /
    • 2000
  • In this paper, A dead-time compensator (DTC) for the processes with long dead-time is proposed. The processes which consist of dead-time, time-constant, gain are estimated by the linear least squares method in the frequency domain. A Smith predictor(SP) modified by including a filter becomes a two degree of freedom DTC. So the proposed DTC can yield the desirable setpoint and load disturbance responses separately. PI controller is used for the primary controller and the filter is tuned to be robust. Simulation examples demonstrate the properties of the proposed DTC.

  • PDF

Online Dead Time Effect Compensation Algorithm of PWM Inverter for Motor Drive Using PR Controller

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1137-1145
    • /
    • 2017
  • This paper proposes the dead time effect compensation algorithm using proportional resonant controller in pulse width modulation inverter of motor drive. To avoid a short circuit in the dc link, the dead time of the switch device is surely required. However, the dead time effect causes the phase current distortions, torque pulsations, and degradations of control performance. To solve these problems, the output current including ripple components on the synchronous reference frame and stationary reference frame are analyzed in detail. As a results, the distorted synchronous d-and q-axis currents contain the 6th, 12th, and the higher harmonic components due to the influence of dead time effect. In this paper, a new dead time effect compensation algorithm using proportional resonant controller is also proposed to reduce the output current harmonics due to the dead time and nonlinear characteristics of the switching devices. The proposed compensation algorithm does not require any additional hardware and the offline experimental measurements. The experimental results are presented to demonstrate the effectiveness of the proposed dead time effect compensation algorithm.

Dead Time Compensation of Stand-alone Inverter Under Unbalanced Load (불평형부하 시 독립형 인버터의 데드타임 보상기법)

  • Jeong, Jinyong;Jo, Jongmin;Lee, Junwon;Chae, Woo-Kyu;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.115-121
    • /
    • 2015
  • Stand-alone inverter supplies constant voltage to loads. However, when a three-phase stand-alone inverter supplies unbalanced load, the generated output voltages also become unbalanced. The nonlinear characteristics of inverter dead time cause a more serious distortion in the output voltage. With unbalanced load, voltage distortion caused by dead time differs from voltage distortion under balanced load. Phase voltages in the stationary reference frame include unbalanced odd harmonics and then, d-q axis voltages in the synchronous reference frame have even harmonics with different magnitude, which are mitigated by the proposed multiple resonant controller. This study analyzes the voltage distortion caused by unbalanced load and dead time, and proposes a novel dead time compensation method. The proposed control method is tested on a 10-kW stand-alone inverter system, and shows that total harmonic distortion (THD) is reduced to 1.5% from 4.3%.