• Title/Summary/Keyword: DeNOx catalyst

Search Result 104, Processing Time 0.023 seconds

A Study on Characteristic of NO Reduction by High Level O2Gas in Selective Non-Catalystic Reaction (High Level O2배가스중 NO 저감에 대한 선택적비촉매환원 반응특성에 관한 연구)

  • 이강우;정종현;오광중
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.577-582
    • /
    • 2002
  • Selective catalytic reduction and selective non-catalytic reduction processes are mainly used to treat nitrogen oxidants generated from fossil-fuel combustion. Especially, the selective non-catalytic reduction process can be operated more economical and designed more simply than the selective catalytic reduction. For this reason, many researchers carried out to increase the removal efficiency of nitrogen oxidants in the condition of low oxygen concentration by using the selective non-catalytic reduction process. However, this study was flue gas contained high oxygen concentration of 20(v/v%) with ammonia as a reducing agent. Moreover, it carried out experiment with many factors that are reaction temperature, retention time, initial NO concentration, NSR(normalized stoichiometric ratio). It was determined optimal operating conditions to improve NO removal efficiency with SNCR process. The De-NOx efficiency was increased with NSR, initial NO concentration and retention time increasement. This study has NO removal efficiency over 80% in the high oxygen concentration as well as low oxygen concentration. The injection of reducing agent may be considered for SNCR process and facility operation in 850$\^{C}$ of optimal condition.

Reduced Scale Model Experiments and Numerical Simulation for Flow Uniformity in de-NOx SCR Reactor (배연탈질 SCR 반응기내 유동균일 화를 위한 축소모형실험 및 전산해석)

  • 이인영;김동화;이정빈;류경옥
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.4
    • /
    • pp.347-354
    • /
    • 2001
  • SCR (Selective Catalytic Reduction) process is presently considered as one of the most effective techniques for removing nitric oxides from exhaust gases. In this study, based on the conceptually designed SCR reactor of 500 MW coal fired power plant. a reduced scale (1/20) SCR reactor model was made to analyze the flow pattern in front of catalyst layer according to the guide vane's design factors such as the number, interval, and angle of vanes. The results of the test were compared to those numerical simulation in order to assure the reliability of two methods. On the basis of our study. the critical Reynolds number (2.0$\times$ 10$^{5}$ ) was proposed for ensuring the similarity between the reduced scale model and the prototype of SCR reactor. Optimum design parameters of guide vanes were determined as follows, 4 vanes, the first vane angle of 93$^{\circ}$, and the vane intervals of 0.85 S/n, 1.05 S/n, 1.1 S/n, 1.0S/n, 1.0S/n (S: the distance of duct, n: the number of guide vanes). The excellent agreement between the results of the numerical simulation and the reduced scale model provides the validation of two methods for prediction of flow through SCR reactor.

  • PDF

Effect of $SO_2$ on DeNOx by Ammonia in Simultaneous Removal of SOx and NOx over Activated Coke (활성 코우크스상의 동시 탈황탈질에서 암모니아에 의한 탈질에 이산화황이 미치는 영향)

  • Kim, Hark-Joon;Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.201-208
    • /
    • 2010
  • The $SO_2$ and $NO_x$ removal with an activated coke catalyst was conducted by a two-stage reaction which first $SO_2$ was oxidized to $H_2SO_4$ and then $NO_x$ was reduced to $N_2$. But if unreacted sulfur dioxide entered in the second stage, the $NO_x$ reduction was hindered by the reaction with ammonia. In this study, experimental investigations by using lab-scale column apparatus on the product and the reactivity of $SO_2$ with ammonia over coke catalyst which was activated with sulfuric acid was carried out through ultimate analysis DTA, TGA and SEM of catalyst before and after the reaction. Also, the effect of reaction emperature on the reactivity of $SO_2$ with ammonia was determined by means of breakthrough curves with time. The obtained results from this study were summarized as following; Activated cokes were decreased carbon component and increased oxygen and sulfur components in comparison with original cokes. The products over coke catalyst were faced fine crystal of $(NH_4)_2SO_4$, which results in the pressure loss of reacting system. The order of general reactivity in terms of the reaction temperature after breakthrough for $SO_2$ was found to be $150^{\circ}C$ > $200^{\circ}C$ > $100^{\circ}C$. This was related to adsorption amounts of ammonia on the activated cokes.

Application of CFD to Design Procedure of Ammonia Injection System in DeNOx Facilities in a Coal-Fired Power Plant (석탄화력 발전소 탈질설비의 암모니아 분사시스템 설계를 위한 CFD 기법 적용에 관한 연구)

  • Kim, Min-Kyu;Kim, Byeong-Seok;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Selective catalytic reduction (SCR) is widely used as a method of removing nitrogen oxide in large-capacity thermal power generation systems. Uniform mixing of the injected ammonia and the inlet flue gas is very important to the performance of the denitrification reduction process in the catalyst bed. In the present study, a computational analysis technique was applied to the ammonia injection system design process of a denitrification facility. The applied model is the denitrification facility of an 800 MW class coal-fired power plant currently in operation. The flow field to be solved ranges from the inlet of the ammonia injection system to the end of the catalyst bed. The flow was analyzed in the two-dimensional domain assuming incompressible. The steady-state turbulent flow was solved with the commercial software named ANSYS-Fluent. The nozzle arrangement gap and injection flow rate in the ammonia injection system were chosen as the design parameters. A total of four (4) cases were simulated and compared. The root mean square of the NH3/NO molar ratio at the inlet of the catalyst layer was chosen as the optimization parameter and the design of the experiment was used as the base of the optimization algorithm. The case where the nozzle pitch and flow rate were adjusted at the same time was the best in terms of flow uniformity.

Evaluation of ZSM-5 supported metal catalyst for NOx removal (NOx 제거를 위한 금속 담지 ZSM-5 촉매 평가)

  • Kim, Jin-Gul;Yoo, Seung-Joon;Kim, Seong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.2015-2020
    • /
    • 2009
  • $NO_x$ reduction of stationary exhaust was performed at atmospheric condition and the temperature ranging from $200^{\circ}C$ to $500^{\circ}C$ over ZSM-5 supported metal catalyst. The characteristics of the prepared catalysts were investigated using the analytical techniques such as SEM, XRD, EDX, ICP and ITR. The results of EDX and ICP analysis demonstrated that the most part of transition metal existed on the exterior surface of support. Maximum de-$NO_x$ yield over Fe/ZSM-5 shown between $380^{\circ}C$ and $400^{\circ}C$ was presumed to be due to the maximum H2 reduction rate at $400^{\circ}C$ of ITR.

Effect of CeO2 Addition on De-CH4 and NOx Performance (CH4와 NOx 저감 성능에 관한 CeO2 첨가의 영향)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.473-479
    • /
    • 2017
  • Due to environmental pollution, hazards of the human body, and global warning, changes in the power train of automobiles are intensifying, and the market forelectronic vehicles is rising. Also, in order to meet the stricter emission regulations forautomobiles with internal combustion engines based on fossil fuel, the proportion of after-treatments for vehicles and vessels is increasing gradually. The objective of this study is to investigate the effectsfrom additive ceric oxide ($CeO_2$) loading amounts to improve the methane ($CH_4$) and nitric oxide (NOx) abatement ability of the natural gas oxidation catalysts(NGOC) reducing toxic gases emitted from compressed natural gas (CNG) buses. Three kinds of NGOC were prepared under the following conditions: fresh and $700^{\circ}C$ for 12hr thermal aging, and the reduction performance of toxic gases was evaluated. Fresh $1Pt-3Pd-1Rh-3MgO-6CeO_2/(Al+Z)$ NGOC containing 6wt% $CeO_2$ had the highest dispersivity of palladium (Pd) with high selectivity to $CH_4$ and improved harmful gas reduction performance. The NGOC with 6wt% $CeO_2$ loaded the least decreased in the dispersivity of the noble metal, and showed the highest reduction of harmful gases due to the thermal durability of $CeO_2$.

A Study on Hybrid DeNOx Process Using Selective Catalytic Reduction and Adsorption (선택적촉매환원과 흡착을 이용한 복합 탈질공정 연구)

  • Moon, Seung-Hyun;Jeon, Dong-Hwan;Park, Sung-Youl
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1329-1336
    • /
    • 2007
  • This study was carried out to develop an efficient process abating high NO concentration. A hybrid process of selective catalytic reduction(SCR) and activated carbon fiber(ACF) adsorption was newly designed and tested. Used ACF in NO adsorption was regenerated by simultaneously applying heat and vacuum. The result of ACF regeneration was for superior in the desorption condition at $140^{\circ}C$ and vacuum 600 mmHg. A commercial catalyst was used at the conditions of reaction temperature at $300^{\circ}C$, $NH_3/NO$ mole ratio = 1.0 for SCR process. NO evolved from ACF regeneration reactor could be removed by SCR reactor up to 98%. But high concentration of NO was exhausted from SCR reactor for one minute when the flue gas of NO 300 ppm and deserted NO from ACF regeneration were simultaneously treated by the same SCR reactor. Therefore, it is necessary to use additional small sized SCR reactor or to increase $NH_3$ concentration for a short time along with NO concentration rather than to mix flue gas with the gas evolving from ACF regeneration at fixed $NH_3$ inlet concentration. The hybrid process of SCR and ACF showed high NO removal efficiency over 80% at any time courses. Through the repeated cycles, stable DeNOx efficiency was maintained, indicating that the hybrid process would be a good countermeasure to the spotaneously high NO concentration instead of increasing the SCR capacity.

De-NOX evaluation of SCR catalysts adding vanadium-graphene nanocomposite (바나듐 담지된 그래핀 나노복합체를 첨가한 SCR 촉매의 제조 및 활성 평가)

  • Jeong, Bora;Lee, Heesoo;Kim, Eok-Soo;Kim, HongDae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.252-256
    • /
    • 2015
  • Nitrogen oxides ($NO_X$) was emitted from flue gas of stationary sources and exhaust gas of mobile sources, can leads to various environments problems. Selective Catalysts Reduction (SCR) is the most effective $NO_X$ removal system. Commercial $V_2O_5-WO_3/TiO_2$ catalysts, usually containing $V_2O_5$ 0.5~3 wt%, $WO_3$ 5~10 wt%, and $V_2O_5$ is active in the reduction of $NO_X$ but also in the desired oxidation of $SO_2$ to $SO_3$. To reduce the amount of vanadium, using graphene matrix supported vanadium to synthesize nanocomposite. Then, we fabricated to 1 inch honeycomb type of SCR catalysts adding graphene-vanadium nanocomposite. The chemical-physical characteristics and the catalytic activity were performed by XRD, XRF, BET and Micro-Reactor (MR). As a result, the De-NOX performance was showed, similar to the commercial catalyst activity as 77.8 % and using nanocomposite catalyst as 77.1 % at $350^{\circ}C$.

Impact of Ash Deposit on Conversion Efficiency of Wall Flow Type Monolithic SCR Reactor (벽유동 방식 담체를 사용하는 SCR 촉매 반응기에서 재 퇴적이 변환 효율에 미치는 영향에 대한 연구)

  • Park, Soo-Youl
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.27-35
    • /
    • 2013
  • SCR (Selective Catalytic Reduction) on DPF (Diesel Particulate Filter) is a multi-functional after-treatment device which integrates soot filtration and DeNOx function into a single can. Because of its advantage in package and cost, the SCR on DPF is considered as a potential candidate for future application. It inherently employes wall flow type monolithic reactor so ash included in exhaust gas may deposit inside the inlet channel of this device. This study is intended to identify the impact of ash deposit on SCR reaction under wall flow type monolithic reactor. Simulation approach is used so relevant species transport equations for wall flow type monolith is derived. These equations can be solved together with momentum conservation equations and give solution for conversion performance. Both ash deposit and clean catalyst case are simulated and comparison of these two cases gives an insight for the impact of ash deposit on conversion performance. Ash deposit can be classified as ash layer and ash plug. and impact of ash deposit is described along with different morphology of ash deposit.

Effect of Vanadium Oxide Loading on SCR Activity and $SO_2$ Resistance over $TiO_2$-Supported $V_2O_5/TiO_2$ Commercial De-NOx Catalysts (상용 $V_2O_5/TiO_2$ 촉매의 바나듐 함량이 SCR 반응성과 $SO_2$ 내구성에 미치는 영향)

  • Park, Kwang Hee;Cha, Wang Seog
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.485-489
    • /
    • 2012
  • We investigated vanadium (V) loading effects on selective catalytic reduction (SCR) activity and $SO_2$ resistance using commercial SCR catalysts applied on a power plant and incinerator with different amounts of V loading. These catalysts were characterized using XRD, Raman, ICP, BET analysis and found to contain $TiO_2$ (anatase) supported $V_2O_5$ added $WO_3$ and $SiO_2$. The SCR activity of the catalysts increased by increasing either the $V_2O_5$ or the $WO_3$ loading amounts; the SCR activity of the catalysts added $WO_3$ is higher than that of $WO_3$-free catalysts. As the V loading amount in the catalyst increased, the $SO_2$ durability decreased. The $V_2O_5$ supported $TiO_2$ catalyst added $WO_3$ and $SiO_2$ inhibits the deactivation process by $SO_2$. The $SO_2$ resistance of catalysts added $SiO_2$ is higher than that of catalysts added $WO_3$.