• Title/Summary/Keyword: De-Icing System

Search Result 24, Processing Time 0.02 seconds

Fundamental Study for Development of an Anti-Icing Pavement System Using Carbon-Fiber Sheet (탄소섬유 쉬트를 활용한 도로 결빙방지 시스템 개발을 위한 기초연구)

  • Lim, Chisu;Park, Kwangpil;Lee, Jaejun;Lee, Byungsuk
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.59-65
    • /
    • 2016
  • PURPOSES : This paper aims to develop a road pavement de-icing system using carbon sheet to replace the older snow de-icing method. Carbon sheet is a light and high-strength metal. Hence, various bodies of research for its applications in many industries have progressed. METHODS : The experiment was conducted in a laboratory. The carbon sheet supplied voltage through a power supply system, and produced heat transfers to the concrete surface. Various factors, such as pavement material, carbon sheet width, penetration depth, and freezing-thawing resistance, were considered in the conducted experiments to confirm the heating transfer efficiency of the carbon sheet. RESULTS : The carbon sheet used was a conductor. Therefore, it produced heat if voltage was supplied. The exposed carbon sheet on the atmosphere did not affect the carbon sheet width when it provided constant voltage. However, the sheet showed different heating behaviors by width change when the carbon sheet penetrated into the concrete. Moreover, the freezing-thawing resistance was decreased by the carbon sheet with increasing width. CONCLUSIONS : The experiments confirmed the possibility of developing a road snow melting system using a carbon sheet. The antiicing system using the carbon sheet to replace the traditional anti-icing system has disadvantages of environmental pollution risk and electric leakage. The pavement also improved its toughness resistance. The utilization value will be very high in the future if carbon sheet heat loss can be minimized and durability is improved.

Demonstration of 10kw Wind Turbine System at the King Sejong Station (극한환경에서의 소형풍력발전 실증운전)

  • Kim, Seok-Woo;Kyong, Nam-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.25-30
    • /
    • 2006
  • 10kW wind turbine has been successfully commissioned at the King Sejong station in April, 2006. The wind turbine installed is a part of the R&D program for developing a solid wind/diesel hybrid power control system for a remote area such as Antarctica. At the same time, the current research aims to develop an anti-icing and de-icing technologies for a small wind turbine rated under 50kW. Since its commissioning, the turbine has generated about 500kWh for 47days without any system faults. Although sufficient data have not been obtained yet, any trouble has not occurred in the wind/diesel hybrid system based on the current analysis. Concerning on the environmental impact by the wind turbine operation, the turbine is installed within the station boundary in order to meet the Madrid protocol. Therefore, wind turbine operation meets the international requirements for preservation of antarctic ecosystem.

Numerical Study on the Performance Assessment for Defrost and De-Icing Modes (승용차의 제상 및 성에 제거 성능 평가를 위한 수치해석적 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Kim, Kyung-Chun;Ji, Ho-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.161-168
    • /
    • 2011
  • The heating, ventilating, air conditioning (HVAC) system is a very important part of an automotive vehicle: it controls the microclimate inside the passenger's compartment and removes the frost or mist that is produced in cold/rainy weather. In this study, the numerical analysis of the defrost duct in an HVAC system and the de-icing pattern is carried out using commercial CFX-code. The mass flow distribution and flow structure at the outlet of the defrost duct satisfied the duct design specification. For analyzing the de-icing pattern, additional grid generation of solid domain of ice and glass is pre-defined for conductive heat transfer. The flow structure near the windshield, streakline, and temperature fields clearly indicate that the de-icing capacity of the given defrost duct configuration is excellent and that it can be operated in a stable manner. In this paper, the unsteady changes in temperature, water volume fraction, and static enthalpy at four monitoring points are discussed.

Design Verification of ECS Condenser Icing Protection System by Flight Test of T-50 Advanced Trainer (T-50 비행시험을 통한 환경제어계통 콘덴서 빙결방지 설계 검증)

  • Nam, Yong-Seog;Kim, Yeonhi;Song, Seok-Bong;Seo, Dong-Yun;Son, Won-Ik;Park, Sung-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.3
    • /
    • pp.40-44
    • /
    • 2008
  • T-50 ECS(environment control system) was designed to have freezing protection for the condenser. However during the ground and flight test, the freezing problem was occurred. This paper deals with the analysis of the freezing problem and introduces anti-freezing design using ADI(Active De-Icing) logic to solve the condenser freezing problem of T-50 ECS

  • PDF

Measuring results of the current distribution ratio between the contact wire and messenger wire in Chungbuk Line catenary (충북선에서 전차선대 조가선의 전류 분포비에 대한 측정 결과)

  • Kwon Sam-Young;Park Young;Jung Ho-Sung;Park Hyun-Jun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.55-58
    • /
    • 2005
  • In this paper, the measuring of the current distribution ratio between catenary and messenger wire on the condition of directly applying voltage to catenary at the Chungbuk line catenary in a process of de-icing system performance test is described. measuring" method and measured data are explained. Result values are also reviewed.

  • PDF

Current Status and Prospect of Aircraft Ice Protection Systems (항공기 결빙 보호장치의 기술 현황 및 전망)

  • Lee, Jae-Won;Cho, Min-Young;Kim, Yong-Hwan;Yee, Kwanjung;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.911-925
    • /
    • 2020
  • Aircraft ice protection systems are applied to the window shield, engine inlet, and wings to protect the aircraft from ice that may form on the surfaces of aircraft and sensors during operation. Icing on the aircraft can cause serious accidents by degrading the flight stability of the aircraft and by malfunctions in sensors such as the air data probe. Various types of ice protection systems have been developed for aircraft in the past. The electro-thermal type ice protection system contributes greatly to improving energy efficiency in a relatively simple structure, and has established itself as one of most popular ice protection systems for modern aircraft. In this review, two representative ice protection systems-hot-air and electro-thermal types-were intensively analyzed, and the prospect of ice protection systems was discussed based on the current status and application cases.

Theoretical Study on Snow Melting Process on Porous Pavement System by using Heat and Mass Transfer (열전달 및 물질전달을 이용한 공극 발열도로에서의 융설 해석에 대한 이론적 연구)

  • Yun, Taeyoung
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.1-10
    • /
    • 2015
  • PURPOSES : A finite difference model considering snow melting process on porous asphalt pavement was derived on the basis of heat transfer and mass transfer theories. The derived model can be applied to predict the region where black-ice develops, as well as to predict temperature profile of pavement systems where a de-icing system is installed. In addition, the model can be used to determined the minimum energy required to melt the ice formed on the pavement. METHODS : The snow on the porous asphalt pavement, whose porosity must be considered in thermal analysis, is divided into several layers such as dry snow layer, saturated snow layer, water+pavement surface, pavement surface, and sublayer. The mass balance and heat balance equations are derived to describe conductive, convective, radiative, and latent transfer of heat and mass in each layer. The finite differential method is used to implement the derived equations, boundary conditions, and the testing method to determine the thermal properties are suggested for each layer. RESULTS: The finite differential equations that describe the icing and deicing on pavements are derived, and we have presented them in our work. The framework to develop a temperature-forecasting model is successfully created. CONCLUSIONS : We conclude by successfully creating framework for the finite difference model based on the heat and mass transfer theories. To complete implementation, laboratory tests required to be performed.

Frost resistance of porous concrete assuming actual environment (實環境を考慮したポーラスコンクリートの耐凍害性の評価(실제 환경을 고려한 다공질 콘크리트의 내동해성(耐凍害性) 평가))

  • NAKAMURA, Takuro;HORIGUCHI, Takashi;SHIMURA, Kazunori;SUGAWARA, Takashi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.227-233
    • /
    • 2008
  • Porous concrete has large continuous voids of 20-30 % by volume, and this concrete is attractive as environmental material in Japan i.e. permeable road pavement, river bank protection with vegetation and green roof system which influence thermal environment. It is necessary to confirm the frost resistance when constructing porous concrete structure in cold region. However applicable test method and evaluation criterion of porous concrete has not defined yet. Therefore, the object of this study is to investigate the frost resistance of porous concrete and this investigation attempts to address this concern by comparing 4 kinds of specified freezing and thawing tests methods (JIS A1148 procedure A/B and RILEM CIF/CDF test) in consideration of actual environment. RILEM freeze-thaw tests are different from JIS A1148 freeze-thaw tests, which are widely adopted for evaluating the frost resistance of conventional concrete in Japan, in water absorption, cooling rate, length of freezing and thawing period, and number of freezing and thawing cycles. RILEM CIF test measures internal damage and is primarily applicable for pure frost attack. CDF test is appropriate for freeze-thaw and de-icing salt attack. JIS A1148 procedure A/B showed extremely low frost resistance of porous concrete if the large continuous voids were filled with water and the ice expansion in the large continuous voids set in during cooling. Frost resistance of porous concrete was improved by mixing coarse aggregate (G7) which particle size is smaller and fine aggregate in JIS freezing and thawing tests. RILEM CIF/CDF test showed that freeze-thaw and de-icing resistance of porous concrete was seems to be superior in that of conventional concrete.

  • PDF

Amber Information Design for Supporting Safe-Driving Under Local Road in Small-scale Area (국지지역에서의 안전운전 지원을 위한 경보정보 설계)

  • Moon, Hak-Yong;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.38-48
    • /
    • 2010
  • Adverse weather (e.g. strong winds, snow and ice) will probably appear as a more serious and frequent threat to road traffic than in clear climate. Another consequence of climate change with a natural disastrous on road traffic is respond to traffic accident more the large and high-rise bridge zone, tunnel zone, inclined plane zone and de-icing zone than any other zone, which in turn calls for continuous adaption of monitoring procedures. Accident mitigating measures against this accident category may consist of intense winter maintenance, the use of road weather information systems for data collection and early warnings, road surveillance and traffic control. While hazard from reduced road friction due to snow and ice may be eliminated by snow removal and de-icing measures, the effect of strong winds on road traffic are not easily avoided. The purpose of the study described here, was to design of amber information the relationship between traffic safety, weather, user information on road weather and driving conditions in local-scale Geographic. The most applications are the optimization of the amber information definition, improvements to road surveillance, road weather monitoring and improved accuracy of user information delivery. Also, statistics on wind gust, surface condition, vehicle category and other relevant parameters for wind induced accidents provide basis for traffic control, early warning policies and driver education for improved road safety at bad weather-exposed locations.

Analysis of Road Snow-removal Infrastructure using Road Snow-removal Historical Data (도로제설 이력자료 기반 제설 인프라 분석)

  • Kim, Jin Guk;Kim, Seoung Bum;Yang, Choong Heon
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.83-90
    • /
    • 2017
  • PURPOSES : In this study, systematic road snow-removal capabilities were estimated based on previous historical data for road-snowremoval works. The final results can be used to aid decision-making strategies for cost-effective snow-removal works by regional offices. METHODS : First, road snow-removal historical data from the road snow-removal management system (RSMS), operated by the Ministry of Land, Infrastructure and Transport, were employed to determine specific characteristics of the snow-removal capabilities by region. The actual owned amount and actual used amount of infrastructure were analyzed for the past three years. Second, the regional offices were classified using K-means clustering into groups "close" to one another. Actual used snow-removal infrastructure was determined from the number of snow-removal working days. Finally, the correlation between the de-icing materials used and infrastructure was analyzed. Significant differences were found among the amounts of used infrastructure depending on snowfall intensity for each regional office during the past three years. RESULTS:The results showed that the amount of snow-removal infrastructure used for low heavy-snowfall intensity did not appear to depend on the amount of heavy snowfall, and therefore, high variation is observed in each area. CONCLUSIONS:This implies that the final analysis results will be useful when making decisions on snow-removal works.