• Title/Summary/Keyword: De novo development

Search Result 92, Processing Time 0.022 seconds

Isolation of Novel Strains of Lactobacillus gasseri EJL and Bifidobacterium breve JTL from Breast Milk and Infant Feces: A Longitudinal Study of a Mother-infant Pair

  • Lee, Heetae;Lee, Chong-Kil;Kim, Kyungjae
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Human breast milk is a potential source of bacteria for the development of the intestinal microbiota of infants. Several species within the genera Lactobacillus and Bifidobacterium were demonstrated to shape the gut microbiota of infants. In this study, the bacterial diversity was investigated in the breast milk and feces of a mother-infant pair, and probiotic candidates were identified. Importantly, the novel L. gasseri EJL and B. breve JTL strains were isolated from breast milk and infant feces samples, respectively; their completed genome was resolved using de novo sequencing. In addition, the bacterial composition in the infant's feces at 1 week revealed the prevalence of Bifidobacterium and Streptococcus; a higher diversity was observed after 3 weeks. In particular, the abundance of Akkermansia was sharply increased at 7 weeks, further increasing thereafter, up to 15 weeks. Our results suggest that human breast milk and infant's feces are a source of probiotic candidates.

Ongoing endeavors to detect mobilization of transposable elements

  • Lee, Yujeong;Ha, Una;Moon, Sungjin
    • BMB Reports
    • /
    • v.55 no.7
    • /
    • pp.305-315
    • /
    • 2022
  • Transposable elements (TEs) are DNA sequences capable of mobilization from one location to another in the genome. Since the discovery of 'Dissociation (Dc) locus' by Barbara McClintock in maize (1), mounting evidence in the era of genomics indicates that a significant fraction of most eukaryotic genomes is composed of TE sequences, involving in various aspects of biological processes such as development, physiology, diseases and evolution. Although technical advances in genomics have discovered numerous functional impacts of TE across species, our understanding of TEs is still ongoing process due to challenges resulted from complexity and abundance of TEs in the genome. In this mini-review, we briefly summarize biology of TEs and their impacts on the host genome, emphasizing importance of understanding TE landscape in the genome. Then, we introduce recent endeavors especially in vivo retrotransposition assays and long read sequencing technology for identifying de novo insertions/TE polymorphism, which will broaden our knowledge of extraordinary relationship between genomic cohabitants and their host.

DNA Methylation Change of Oct-4 Gene Promoter Region during Bovine Preimplantation Early Embryos (소 착상 전 초기수정란에서 Oct-4 유전자 Promoter 영역의 DNA 메틸화 변화)

  • Ko, Yeoung-Gyu;Kim, Jong-Mu;Kim, Dong-Hoon;Cha, Byung-Hyun;Kim, Seong-Soo;Yang, Byoung-Chul;Im, Gi-Sun;Kim, Myong-Jik;Min, Kwan-Sik;Seong, Hwan-Hoo
    • Reproductive and Developmental Biology
    • /
    • v.32 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • DNA methylation is involved in tissue-specific gene control and essential for normal embryo development Octamer-binding transcription factor 4 (Oct-4) is one of the most important transcription factors for early differentiation. This study was performed whether the bovine Oct-4 is tissue specific or developmental dependent epigenetic mark, we investigated transcripts and the methylation status of CpGs of 5'-promoter region of Oct-4 in bovine preimplantation embryos. Oct-4 transcripts were highly detected in morula and blastocyst, while they were present low levels in sperm and 2- to 8-cell stage embryos. These results suggest that de novo expression of Oct-4 initiates at morula stage of embryogenesis. Here we determined that there is a tissue-dependent differentially methylated region (T-DMR) in the 5'-promoter region of Oct-4. The methylation status of the Oct-4 T-DMR was distinctively different in the oocyte from that in the sperm and adult somatic tissues and changed from zygote to blastocyst stage, suggesting that active methylation and demethylation occur during preimplantation development. Based on these results, the 5'-promoter region of Oct-4 gene is target for DNA methylation and the methylation status changes variously during embryonic development in bovine.

Adenosine Modulate the Oocyte Developmental Competence by Exposing Stages and Synthetic Blocking during In Vitro Maturation

  • Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.20 no.2
    • /
    • pp.127-133
    • /
    • 2016
  • Purine metabolism is known factor for nuclear maturation of oocytes through both follicle cells and oocyte itself. However, it is largely unknown the roles of purine metabolism in the oocyte competence for fertilization and early development. In this study, the effects of adenosine in oocyte competence for development were examined using adenosine and its synthetic inhibitors. Adenosine treatment from GV intact stage for 18 hr (fGV) caused of decrease the fertilization rate but of increase the cleavage rate compared from the other stage treatment groups. Hadacidin did not effect on fertilization rate but increased cleavage rate without stage specificity. Adenosine did not block the effects of hadacidin with the exception of fGV group. Inhibition of purine synthetic pathways the fertilization rate was decreased in the fGV and fGVB groups but increased in the fMII group. Exogenous adenosine caused of decrease fertilization rate in the fGVB group but increase in the fMII group. Cleavage rate was dramatically increased in the adenosine treatment with synthetic inhibitors. It means that the metabolism of purine has stage specific effects on fertilization and cleavage. Exogenous adenosine had only can improve oocyte developmental competence when it treated at GV intact stage. On the other hand, endogenous synthesis in all maturation stage cause of increase the cleavage rate without effects on fertilization. These data suggest that adenosine at GV stage as a paracrine fashion and inhibitions of endogenous adenosine in all stage improve oocyte developmental competence.

Molecular genetic decoding of malformations of cortical development

  • Lim, Jae Seok;Lee, Jeong Ho
    • Journal of Genetic Medicine
    • /
    • v.12 no.1
    • /
    • pp.12-18
    • /
    • 2015
  • Malformations of cortical development (MCD) cover a broad spectrum of developmental disorders which cause the various clinical manifestations including epilepsy, developmental delay, and intellectual disability. MCD have been clinically classified based on the disruption of developmental processes such as proliferation, migration, and organization. Molecular genetic studies of MCD have improved our understanding of these disorders at a molecular level beyond the clinical classification. These recent advances are resulted from the development of massive parallel sequencing technology, also known as next-generation sequencing (NGS), which has allowed researchers to uncover novel molecular genetic pathways associated with inherited or de novo mutations. Although an increasing number of disease-related genes or genetic variations have been identified, genotype-phenotype correlation is hampered when the biological or pathological functions of identified genetic variations are not fully understood. To elucidate the causality of genetic variations, in vivo disease models that reflect these variations are required. In the current review, we review the use of NGS technology to identify genes involved in MCD, and discuss how the functions of these identified genes can be validated through in vivo disease modeling.

Development of Evidence-Based Guideline for Fever Management of Critical Adult Patients with Brain Injury (성인 뇌 손상 발열 중환자를 위한 체온 중재 지침 개발)

  • Lee, Jung Min;Cho, Yong Ae;Yoon, Ji Hyun;Choi, Hye Ok;Kim, Nam Cho
    • Journal of Korean Clinical Nursing Research
    • /
    • v.22 no.3
    • /
    • pp.265-275
    • /
    • 2016
  • Purpose: The purpose of this study was to develop an evidence-based guideline for fever management for critically ill adult patients after a brain injury. Methods: Development of the guideline process was done according to the De Novo development Korean Medical Guideline Information Center (KoMGI) and consists of 12 steps. Results: This developed guideline included 3 domains and 19 recommendations. The number of recommendations for each domain was 7 on measuring temperature, 9 on managing fever, and 3 on managing shivering. The level of evidence was as follows: 58% were at level I, and 42% at level II. Of the recommendations, 58% were graded as A, 37% as B, and 5% as C. Conclusion: These findings indicate that this guideline can be used as a guide for nursing in critically ill adult patients with brain injury. This guideline can also contribute to improvements in the quality of nursing care for critically ill adult patients with brain injury.

Development of a Practice Guideline for Catheter Dysfunction in Hemodialysis Patients (혈액투석 환자의 기능부전 도관관리 실무지침개발)

  • Lee, Kyung Mi;Kim, Mi Yeun;Hong, Jin Young;Cho, Yong Ae;Yang, Won Ji
    • Journal of Korean Clinical Nursing Research
    • /
    • v.22 no.2
    • /
    • pp.238-247
    • /
    • 2016
  • Purpose: This study was done to develop an evidence-based practice guideline for catheter dysfunction in hemodialysis patients. Methods: Development of the guideline process was done according to the De Novo development version 1.0 by NECA which consists of 12 steps. Results: The developed guideline consisted of 5 domains and 14 recommendations. The number of recommendations for each domain were: 3 on catheter dysfunction assessment, 1 on conservative management of catheter dysfunction, 7 on drug management of catheter dysfunction, 1 on catheter function test and 2 on maintenance management. Of the recommendations, 7.15% were marked as A grade, 52.85% of B grade, and 50% of C grade. Conclusion: Findings in this study indicate that this guideline can be added to the evidence-based practice guidelines for fundamentals of practice and that this guideline can be disseminated to nurses nationwide in order to improve the care of hemodialysis patients with catheter dysfunction.

Molecular Cloning and Characterization of Expression Patterns of a Plastid ω-3 Fatty Acid Desaturase cDNA from Perilla frutescens

  • Lee, Seong-Kon;Kim, Kyung-Hwan;Kwon, Moo-Sik;Hwang, Young-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.1
    • /
    • pp.6-11
    • /
    • 2001
  • An ${\omega}-3$ fatty acid desaturase gene which is involved in de novo synthesis of -Iinolenate was isolated from cDNA library of Perilla frutescens. A cDNA library was constructed with mRNA extracted from perilla seeds of 12 DAF. The cDNA clone consisting of 1317-bp open reading frame encoding 438 amino acids with a relative MW of 50kDa, was isolated and showed 65-83% similarities to other known genes. This cDNA is deduced to encode a plastidal ${\omega}-3$ fatty acid desaturase based on the fact that it has higher homology to plastidal ones than to microsomal ones and its N-terminal sequence shares several characteristics of transit peptides of chloroplast proteins. Southern blot analysis of genomic DNA indicated that more than one gene or alleles for ${\omega}-3$ fatty acid desaturase are present in the genome of perilla. Northern blot analysis showed that the ${\omega}-3$ fatty acid desaturase gene is mainly revealed in early developing seeds and has different expression patterns depending on tissue types compared to the microsomal ones.

  • PDF

Hypotonia, Ataxia, and Delayed Development Syndrome caused by the EBF3 mutation in a Korean boy with muscle hypotonia

  • Kim, Tae-Gyeong;Choi, Yoon-Ha;Lee, Ye-Na;Kang, Min-Ji;Seo, Go Hun;Lee, Beom Hee
    • Journal of Genetic Medicine
    • /
    • v.17 no.2
    • /
    • pp.92-96
    • /
    • 2020
  • Hypotonia, Ataxia, and Delayed Development Syndrome (HADDS) is an autosomal-dominant, extremely rare neurodevelopmental disorder caused by the heterozygous EBF3 gene mutation. EBF3 is located on chromosome 10q26.3 and acts as a transcription factor that regulates neurogenesis and differentiation. This syndrome is characterized by dysmorphism, cerebellar hypoplasia, urogenital anomaly, hypotonia, ataxia, intellectual deficit, and speech delay. The current report describes a 3-year-old Korean male carrying a de novo EBF3 mutation, c.589A>G (p.Asn197Asp), which was identified by whole exome sequencing. He manifested facial dysmorphism, hypotonia, strabismus, vermis hypoplasia, and urogenital anomalies, including vesicoureteral reflux, cryptorchidism, and areflexic bladder. This is the first report of a case of HADDS cause by an EBF3 mutation in the Korean population.

Transcriptional Regulation of Lipogenesis and Adipose Expansion (Lipogenesis와 adipose expansion의 전사조절)

  • Jang, Younghoon
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.318-324
    • /
    • 2022
  • PPARγ and C/EBPα are master adipogenic transcription factors (TFs) required for adipose tissue development. They control the induction of many adipocyte genes and the early phase of adipogenesis in the embryonic development of adipose tissue. Adipose tissue continues to expand after birth, which, as a late phase of adipogenesis, requires the lipogenesis of adipocytes. In particular, the liver and adipose tissues are major sites for de novo lipogenesis (DNL), where carbohydrates are primarily converted to fatty acids. Furthermore, fatty acids are esterified with glycerol-3-phosphate to produce triglyceride, a major source of lipid droplets in adipocytes. Hepatic DNL has been actively studied, but the DNL of adipocytes in vivo remains not fully understood. Thus, an understanding of lipogenesis and adipose expansion may provide therapeutic opportunities for obesity, type 2 diabetes, and metabolic diseases. In adipocytes, DNL gene expression is transcriptionally regulated by lipogenesis coactivators, as well as by lipogenic TFs such as ChREBP and SREBP1a. Recent in vivo studies have revealed new insights into the lipogenesis gene expression and adipose expansion. Future detailed molecular mechanism studies will determine how nutrients and metabolism regulate DNL and adipose expansion. This review will summarize recent updates of DNL in adipocytes and adipose expansion in terms of transcriptional regulation.