• 제목/요약/키워드: Dc-distribution system

검색결과 319건 처리시간 0.027초

LVDC 배전계통에 있어서 사고구간분리 보호협조 알고리즘에 관한 연구 (A Study on Protection Coordination Algorithm for Separating Fault Section in LVDC Distribution System)

  • 강민관;이후동;태동현;노대석
    • 한국산학기술학회논문지
    • /
    • 제22권1호
    • /
    • pp.768-776
    • /
    • 2021
  • LVDC 배전계통에서 DC전원의 공급을 위한 컨버터나 DC차단기의 보호동작은 AC 보호기기 보다 훨씬 빠르기 때문에, 기존의 T-C곡선의 반 한시특성에 의한 보호기기간의 보호협조 운용이 어려운 문제점을 가지고 있다. 따라서, 본 논문에서는 LVDC 배전계통에서 사고지점에 따라 다양하게 나타날 수 있는 사고전류의 경사각 개념에 대하여 정의하고, 이를 바탕으로 컨버터와 보호기기간의 협조동작을 신속 정확하게 수행하고, 정전구간의 범위를 최소화할 수 있는 LVDC 배전계통의 사고구간분리 보호협조 알고리즘을 제안한다. 즉, LVDC 배전계통에서의 사고전류가 선로정수에 의해 사고지점에 따라 비례적으로 변하는 경사각의 특성을 이용하여 메인 컨버터가 탈락되기 전에 사고구간을 선택적으로 분리하도록 한다. 또한, 본 논문에서는 배전계통 상용해석 프로그램인 PSCAD/EMTDC를 이용하여 배전용 변전소, LVDC용 컨버터 그리고 LVDC 배전선로로 구성된 1.5kV급 LVDC 배전계통 모델링을 수행한다. 이를 바탕으로 사고지점에 따른 경사각 특성 및 보호협조 운용알고리즘을 분석한 결과, 메인 컨버터가 탈락하기 전 사고구간만을 2ms 이내에 분리하고 건전구간의 수용가에 미치는 영향을 최소화 할 수 있어, 본 논문에서 제안한 사고구간분리 보호협조 운용 알고리즘이 유용함을 확인하였다.

Crown Ether와 HDEHP에 의한 알칼리금속이온의 추출 (Extraction of Alkali Metal Cation with Crown Ethers and HDEHP)

  • 이인종;김시중;이철
    • 대한화학회지
    • /
    • 제30권4호
    • /
    • pp.359-368
    • /
    • 1986
  • Crown ether (DC18C6, DC24C8)과 HDEHP로 알칼리 금속 이온을 용매 추출할 때의 추출평형을 연구하였다. 추출평형상수는 DC18C6계에서 $Na^+순으로 증가하였으며 DC24C8계에서는 $Rb^+순으로 증가하였다. 유기용매상으로 추출되는 추출종은 $M_1(crown ether)_1\;(HDEHP)_1$이며 추출평형상수의 크기는 crown ether의 유기용매상과 수용액상에서의 분배비와 crown ether-알칼리금속 착물의 안정도 상수에 의해서 결정된다.

  • PDF

Model Predictive Control of Bidirectional AC-DC Converter for Energy Storage System

  • Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.165-175
    • /
    • 2015
  • Energy storage system has been widely applied in power distribution sectors as well as in renewable energy sources to ensure uninterruptible power supply. This paper presents a model predictive algorithm to control a bidirectional AC-DC converter, which is used in an energy storage system for power transferring between the three-phase AC voltage supply and energy storage devices. This model predictive control (MPC) algorithm utilizes the discrete behavior of the converter and predicts the future variables of the system by defining cost functions for all possible switching states. Subsequently, the switching state that corresponds to the minimum cost function is selected for the next sampling period for firing the switches of the AC-DC converter. The proposed model predictive control scheme of the AC-DC converter allows bidirectional power flow with instantaneous mode change capability and fast dynamic response. The performance of the MPC controlled bidirectional AC-DC converter is simulated with MATLAB/Simulink(R) and further verified with 3.0kW experimental prototypes. Both the simulation and experimental results show that, the AC-DC converter is operated with unity power factor, acceptable THD (3.3% during rectifier mode and 3.5% during inverter mode) level of AC current and very low DC voltage ripple. Moreover, an efficiency comparison is performed between the proposed MPC and conventional VOC-based PWM controller of the bidirectional AC-DC converter which ensures the effectiveness of MPC controller.

DC 배전망에서의 전기 자동차 급속 충전 시스템 (Electric Vehicle Quick Charging System on DC Distribution)

  • 백요한;강태환;오성민;오정훈;조형연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 추계학술대회
    • /
    • pp.211-212
    • /
    • 2010
  • DC 배전망에서 전기자동차 급속 충전 시스템은 대용량 전력 변환기를 통해 AC 배전망의 전압을 DC 전압으로 변환하여 DC 입력형 급속 충전기에 배전한다. DC 입력형 급속 충전기는 인버터기능이 제거됨으로 구조를 단순화하고 소형경량화 할 수 있다. 또한 충전소 내에 설치된 다수의 충전기 각각이 수행하던 전류 고조파 저감, 역률 향상, 양방향 전력 제어와 같은 기능들을 하나의 장치가 일괄 수행함으로서 충전소 인프라 단위의 신뢰성을 높일 수 있다. 본 논문은 DC 배전망에서의 전기 자동차 급속 충전 시스템의 특징에 대해서 설명하고자 한다.

  • PDF

Capacity Optimizing method of Distributed Generators in Stand-Alone Microgrid Considering Grid Link-Characteristics

  • Han, Soo-Kyeong;Choi, Hyeong-Jin;Cho, Soo-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1483-1493
    • /
    • 2018
  • Recently, more power facilities are needed to cope with the increasing electric demand. However, the additional construction of generators, transmission and distribution installations is not easy because of environmental problems and citizen's complaints. Under this circumstance, a microgrid system with distributed renewable resources emerges as an alternative of the traditional power systems. Moreover, the configuration of power system changes with more DC loads and more DC installations. This paper is written to introduce an idea of a genetic algorithm-based solution to determine the optimal capacity of the distributed generators depending on the types of system configuration: AC-link, DC-link and Hybrid-link types. In this paper, photovoltaic, wind turbine, energy storage system and diesel generator are considered as distributed generators and the feasibility of the proposed algorithm is verified by comparing the calculated capacity of each distributed resource with HOMER simulation results for 3 types of system configuration.

4kW급 상용차량용 전력전자 냉방장치의 열 환경 성능평가 (Thermal environmental performance evaluation of 4kW power electronic cooling system for commercial vehicle)

  • 한근우;김성곤;이충훈;최명현;정영국
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.290-291
    • /
    • 2017
  • This study deals with an evaluation method for testing the robustness of the 4 kW commercial power electronic cooling system to the thermal environment. The power electronic cooling system consists of a cascaded push-pull DC / DC converter, a three-phase DC / AC inverter, and an electric compressor. The system manufactured by the thermal environment evaluation test (heat distribution test, thermal impact test, high temperature operation test, temperature cycle test, low temperature operation test) for the commercial electric power cooling system for commercial vehicle proves that it is robust against thermal environment.

  • PDF

함정용 다기능 AESA 레이더 시스템을 위한 고전압·고효율 DC-DC 전원모듈 개발 (Development of High Voltage, High Efficiency DC-DC Power Module for Modern Shipboard Multi-Function AESA Radar Systems)

  • 정민길;이원영;김상근;김수태;권영수
    • 한국군사과학기술학회지
    • /
    • 제24권1호
    • /
    • pp.50-60
    • /
    • 2021
  • For conventional AESA radars, DC-DC power modules using 300 Vdc have low efficiency, high volume, heavy weight, and high price, which have problems in modularity with T/R module groups. In this paper, to improve these problems, we propose a distributed DC-DC power module with high-voltage 800 Vdc and high-efficiency Step-down Converter. In particular, power requirements for modern and future marine weapons systems and sensors are rapidly evolving into high-energy and high-voltage power systems. The power distribution of the next generation Navy AESA radar antenna is under development with 1000 Vdc. In this paper, the proposed highvoltage, high-efficiency DC-DC power modules increase space(size), weight, power and cooling(SWaP-C) margins, reduce integration costs/risk, and reduce maintenance costs. Reduced system weight and higher reliability are achieved in navy and ground AESA systems. In addition, the proposed architecture will be easier to scale with larger shipboard radars and applicable to other platforms.

Numerical Simulation of the Characteristics of Electrons in Bar-plate DC Negative Corona Discharge Based on a Plasma Chemical Model

  • Liu, Kang-Lin;Liao, Rui-Jin;Zhao, Xue-Tong
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1804-1814
    • /
    • 2015
  • In order to explore the characteristics of electrons in DC negative corona discharge, an improved plasma chemical model is presented for the simulation of bar-plate DC corona discharge in dry air. The model is based on plasma hydrodynamics and chemical models in which 12 species are considered. In addition, the photoionization and secondary electron emission effect are also incorporated within the model as well. Based on this model, electron mean energy distribution (EMED), electron density distribution (EDD), generation and dissipation rates of electron at 6 typical time points during a pulse are discussed emphatically. The obtained results show that, the maximum of electron mean energy (EME) appears in field ionization layer which moves towards the anode as time progresses, and its value decreases gradually. Within a pulse process, the electron density (ED) in cathode sheath almost keeps 0, and the maximum of ED appears in the outer layer of the cathode sheath. Among all reactions, R1 and R2 are regarded as the main process of electron proliferation, and R22 plays a dominant role in the dissipation process of electron. The obtained results will provide valuable insights to the physical mechanism of negative corona discharge in air.

독립형 DC 마이크로그리드의 최적화 설계와 협조적 제어 (Optimized Design and Coordinated Control for Stand-alone DC Micro-grid)

  • 한태희;이지헌;김현준;한병문
    • 전력전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.63-71
    • /
    • 2013
  • This paper describes the coordinated droop control method for stand-alone type DC micro-grid to improve reliability and utilization of distributed generations and energy storage. The stand-alone type DC micro-grid consists of several distributed generations such as a wind power generation, solar power and micro-turbine, and energy storage. The proposed method which is based on autonomous control method shows high reliability and stability through coordinated droop control of distributed generations and energy storage and also capability of battery management. The operation of stand-alone type DC micro-grid was analyzed using detail simulation model with PSCAD/EMTDC software. Based on simulation results, a hardware simulator was built and tested with commercially available components and performance of system was verified.

KSTAR 용 소선-소선 접합부의 직류저항 계산 (Calculation of DC resistance of strand-to-strand joints for KSTAR)

  • 이호진;남현일;김기백;홍계원
    • Progress in Superconductivity
    • /
    • 제3권1호
    • /
    • pp.104-110
    • /
    • 2001
  • Since the strand-to-strand type joint far CICC (Cable-In-Conduit Conductor) is small in size and has low DC resistance, it is expected to be useful type fur a superconducting magnet system which had a compact structure like the KSTAR (Korea Superconducting Tokamak Advanced Research) coil system. The DC resistance is changed according to the distribution patterns of strands in cables connected together in the joint. A commercial code was used for the calculation of the DC resistance. With the decrease of outer diameter of the Joint, Which means the increase of strand volume fraction in the joint, the calculated DC resistance decrease rapidly and non-lineally. The variation of resistance depends mainly on the volume fraction of solder which has higher resistivity than copper. The resistance decrease inversely with the increase of the length of the joint. The resistance increase with increase of number of triplets in each stack contacted with that of another terminal cable. In case of the strand-to-strand joint that has 62mm of outer diameter, 52mm of inner diameter, 100mm of overlap length, and four triplets in each stack, the calculated DC resistance is less than 1 n-Ohm.

  • PDF