• 제목/요약/키워드: Daylight Simulation

검색결과 73건 처리시간 0.027초

초등학교 채광 성능 실태조사에 따른 건축계획적 개선방안에 관한 연구 (Architectural Implementation for the Daylight-Performance in the Elementary School)

  • 이정철;임홍수;김곤;구재오
    • KIEAE Journal
    • /
    • 제10권3호
    • /
    • pp.43-50
    • /
    • 2010
  • Natural lighting is directly connected with our mental and physical health. For working or learning effect, the proper natural lighting is required for improving our living conditions. School facilities, especially, are the place where includes students' ordinary activities with learning behaviors during the school years from elementary to high school. This study was carried out for the purpose introducing a basic database in that planning a school by researching on the actual in the natural lighting system of some schools' classroom, estimating, and analyzing through a simulation, which resulted in a method of improving the natural lighting system. As a result of measuring and analyzing Daylight Factor(DF) during the time from 9 am to 3 pm when students are activating in their classroom, generally DF range of the sides near to window and aisle seats zone are not distributed well. Besides, two out of four school which are researched would not reach the standards of the law for school sanitary while rest of the schools meet the standards; Average DF 5% and Minimum DF 2%. And the result of a simulation by RADIANCE program shows the most appropriate DF range when it is applied in variable numbers about an oriehows the- South-east 15, south-east 30, south-east 45, south-west 15, south-west 30, and south-west 45 degrees. When it is applied in the variable numbers about glass transmittance - 60%, 70%, and 80% in condition facing south of a classroom, the result shows that the DF range of 80% transmittance is relatively higher than other glasses in the classroom. Thus, when a school is built, plans for an orientation is necessary for improve of elementary schools' environment with the glass installation which is made for high transmittance and is regarded with the students' activities time.

채광시스템과 인공조명설비의 통합기술 및 성능평가연구 (Predicted Performance of the Integrated Artificial Lighting System in Relation to Daylight Levels)

  • 김곤;김정태
    • 한국태양에너지학회 논문집
    • /
    • 제22권3호
    • /
    • pp.47-56
    • /
    • 2002
  • The office is an excellent candidate for implementing daylighting techniques because of the relatively high electric lighting power densities and long daytime use pattern. The quantity of light available for a space can be translated in term of the amount of energy savings through a process of a building energy simulation. To get significant energy savings in general illumination, the electric lighting system must be incorporated with a daylight - activated dimmer control. A prototype configuration of an office interior has been established and the integration between the building envelope and lighting and HVAC systems is evaluated based on computer modeling of a lighting control facility. First of all, an energy-efficient luminaire system is designed for both a totally open-plan office interior and a partitioned office. A lighting design and analysis program, Lumen-Micro 2000 predicts the optimal layout of a conventional fluorescent lighting fixture to meet the designed lighting level and calculates unit power density, which translates the demanded amount of electric lighting energy. A dimming control system integrated with the contribution of daylighting has been applied to the operating of the artificial lighting. Annual cooling load due to lighting and the projecting saving amount of cooling load due to daylighting under overcast diffuse sky are evaluated by a computer software, ENER-Win. In brief, the results from building energy simulation with measured daylight illumination levels and the performance of lighting control system indicate that daylighting can save over 70 percent of the required energy for general illumination in the perimeter zones through the year. A 25 % of electric energy for cooling may be saved by dimming and turning off the luminaires in the perimeter zones.

시뮬레이션에 의한 다기능 복합 솔라윈도우 시스템의 채광과 에너지성능평가 (The Daylight and Energy Performance Evaluation of Multi-purpose Solar Window System Using Simulaton Program)

  • 정열화;이순명
    • 한국태양에너지학회 논문집
    • /
    • 제31권6호
    • /
    • pp.103-110
    • /
    • 2011
  • The aim of this study was to analysis the Heating/cooling performance and Daylighting performance of Solar Window System built in apartments. the solar window is the idea to integrate daylight as a third form of solar energy into a PV/Solar Collector system. The process of this study is as follows: 1)Solar Window system was designed through the investigation of previous paper and work. 2)The simulation program(Lightscape3.2) was used in daylighting performance analysis. the reference model of simulation was made up to analysis daylighting performance on Solar Window system. 3)The simulation program(ESP-r, Therm5.0, Window6.0) was used in energy performance analysis. the reference model of simulation was made up to analysis energy and daylighting performance on Solar Window system. 4)The Size of Simulation model for daylighting and heating/cooling energy analysis was $148.5m^2$ 5)The lighting performance analysis was carried out with various variants, such as the size and installed area of Solar Window system. 6)Energy performance simulation was carried out with various variants, such as Integrated U-value of Solar Window system according to its position, installed angle and insulation thickness. Consequently, When Solar Window system is equipped with balcony window of Apartment, Annual heating and cooling energy of reference model was cut down at the average of $4.1kWh/m^2$ or 4.2%.

시뮬레이션 분석기법을 이용한 주거용 건물의 공간별 채광성능 연구 (Space study on Lighting Performance For Residential Buildings By using Simulation Analysis)

  • 임태섭;임정희;김병선
    • KIEAE Journal
    • /
    • 제13권3호
    • /
    • pp.97-104
    • /
    • 2013
  • This proposed simulation-based design study is based on the design of residential high-rise buildings in South-Korea. the purpose of this study is to evaluate the amount of daylighting performance passing through building glazing according to sky conditions, orientation of windows and each space of Apartment buildings. The clear sky includes sunshine and is intense and brighter at the horizon than at the zenith, except in the area around the sun. Daylight received within a building is directly dependent upon the sun's position and the atmospheric conditions. Orientation of the building generally used to refer to solar orientation which is the siting of building with respect to solar access. Although any building will have different orientations for its different sides, the orientation can refer to a particular room, or to the most important facade of the building. north-facing windows receive twice the winter sun than east and west facing windows, allowing light and warmth into the home. They can be easily shaded from the high summer sun to help keep the house cool. Ideally, the glazing area should be between 10-25% of the floor area of the room. This paper was calculated by a Desktop Radiance program. The space dimensions were based on a unit module of real constructed apartment having divided into five sections such as living room, room1, room2, room3 and kitchen.

광선추적기법을 활용한 곡면형 광선반시스템 설계 및 채광성능 평가 (Evaluation of Daylighting Performance and Design of a Curved-Lightshelf by the Ray Tracing Method)

  • 김동수;윤종호;신우철;이광호
    • 한국태양에너지학회 논문집
    • /
    • 제31권4호
    • /
    • pp.136-141
    • /
    • 2011
  • The lightshelf system reduces intense illumination levels of indoor from direct sun light and reflect to lead diffused light into indoor deeply. This study aims to design acurved-lightshelf by a ray tracing method and evaluate the daylighting performance of window integrated with the curved-lightshelf by computer simulations. For this purpose, evaluation test model was designed for the experiments to validate the simulation model, and the curved-lightshelf was designed by the ray tracing method using Ecotect. After the office model was designed using 3D simulation, the average indoor illuminance, luminance and distribution of illuminance were evaluated by simulation which has a algorithm of Radiosity and Ray-Tracing method under four different cases(case1;no lightshelf, case2; Flat board, case3; tilted at $30^{\circ}$ angle, case4; the curved-lightshelf). As results, it turns out that case1 showed higher average illuminance and case4 was more uniformly distributed than case2 and case3, In addition average luminance of case1 was also lower. indicating that the curved-lightshelf would reduce the possibility of the glare, while maintaining the sufficient daylight level.

베네시안 블라인드가 적용된 오피스 건물의 외피 투과체 계획을 위한 열·빛 환경 평가에 대한 연구 (Evaluation of Thermal and Visual Environment for the Glazing and Shading Device in an Office Building with Installed of Venetian Blind)

  • 김철호;김강수
    • KIEAE Journal
    • /
    • 제15권6호
    • /
    • pp.101-109
    • /
    • 2015
  • Purpose: Glazing and shading devices influence a lot on the thermal and visual environment in office buildings. Solar heat and daylight are contrary concept, therefore proper arrangement of thermal and optical performance is needed when designing a glazing and shading devices. The purpose of this study is to examine the conditions of the glazing and shading devices available for promoting the reduction of cooling loads + lighting loads and the improvement in thermal comfort and visual comfort for the summer season in an office building installed with venetian blind. Method: This study established 12 simulation cases which have different glazings and the positions of venetian blind for evaluating different thermal and optical performance. And by using EnergyPlus v8.1 and Window v7.2 program, we quantitatively analyzed cooling loads + lighting loads, thermal comfort and visual comfort in an office building installed with the glazing and shading devices. Result: Consequently, Case 9(Double Low-E+Exterior Blind) is the best arrangement of solar heat gain and daylight influx, thereby becomes the most excellent case of reducing cooling+lighting loads(46.8%) and simultaneously becomes the enhancement case in thermal comfort. Also, DGI(Daylight glare index) under clear sky conditions in summer was evaluated to be 19.6, and thereby satisfied the recommendation level of allowing visual comfort.

퍼지 PI 제어기를 이용한 태양광 발전시스템의 MPPT 제어 (The MPPT Control of Photovoltaic System using the Fuzzy PI Controller)

  • 고재섭;정동화
    • 조명전기설비학회논문지
    • /
    • 제28권2호
    • /
    • pp.9-18
    • /
    • 2014
  • This paper proposes the fuzzy PI controller for maximum power point tracking(MPPT) control of photovoltaic system. The output characteristics of the solar cell are a nonlinear and affected by a temperature, the solar radiation. The MPPT control is a very important technique in order to increase an output and efficiency of the photovoltaic system. The conventional perturbation and observation(PO) and incremental conductance(IC) are the method which finding maximum power point(MPP) by the continued self-excitation vibration, and uses the fixed step size. If the fixed step size is a large, the tracking speed of maximum power point is faster, but the tracking accuracy in the steady state is decreased. On the contrary, when the fixed step size is a small, the tracking accuracy is increased and the tracking speed is slower. Therefore, this paper proposes the MPPT control using the fuzzy PI controller that can be improve a MPPT control performance. The fuzzy PI controller is adjusted a input of PI controller by fuzzy control and compensated a cumulative error of fuzzy control by PI controller. The fuzzy PI MPPT control is compared to conventional PO and IC MPPT method for various temperature and radiation condition. This paper proves the validity of the fuzzy PI controller using these results.

시뮬레이션을 이용한 주거용 건축물의 공간별 채광성능 평가 (Assessment of the Daylighting Performance in Residential Building Units of South Korea through RADIANCE simulation)

  • 임태섭;임홍수;구재오;김곤
    • KIEAE Journal
    • /
    • 제12권2호
    • /
    • pp.25-32
    • /
    • 2012
  • This paper focused on the daylighting performance of residential high-rise buildings in South-Korea. the purpose of this study is to estimate the visual environment of sunlight coming into opening according to sky conditions, orientation of windows and each space of Apartment buildings. Season of the year, weather, and time of day combine with predictable movement patterns of the sun to create highly variable and dynamic daylighting conditions. Daylighting design is usually based on the dominant sky condition and the micro-climate for the building site. There are three common sky conditions: clear sky, overcast sky, and partly cloudy sky. The clear sky includes sunshine and is intense and brighter at the horizon than at the zenith, except in the area around the sun. Daylight received within a building is directly dependent upon the sun's position and the atmospheric conditions. Easily used charts, diagrams, and software programs allow study of solar geometry for any geographic location and time of day. on the other hand, the overcast sky is characterized by diffuse and variable levels of light and has dense cloud cover over 90% of the sky. This paper was calculated by a Desktop Radiance program. The space dimensions were based on a unit module of real constructed apartment having divided into five sections such as living room, room1, room2, room3 and kitchen.

Lightscape를 이용한 광선반 창호시스템의 채광성능평가 (Daylighting Performance Evaluation of Lightshelf Window System by Lightscape)

  • 문기훈;김정태
    • KIEAE Journal
    • /
    • 제4권4호
    • /
    • pp.45-52
    • /
    • 2004
  • Simulation of daylighting by computer program is a method to avoid unnecessary efforts in manufacture of its testing models, to reduce its measuring tolerances and be able to provide variations of various weather conditions as well. Many simulation programs on daylighting have been released freely or commercialized for selling, however, a demonstration of their availability and validity as a tool for evaluating daylighting performance is required since each one has its own characteristics. The objectives of this study lie in suggesting an application method of evaluation tools and demonstration of limits and characteristics so as to more easily determine the daylightingperformance in the very initial stages of planning for an arbitrary office space in which windows with daylight access are built. We produced scale model of the general light inducing type side lighting with lightshelfand ceiling, and the luminance (at 78 measuring points) and illuminance (at 84 measuring points) were measured in a clear sky. And a comparison of the measured values and the calculated values from a computer simulation using the Lightscape program was performed.

통합 채광시스템의 건물 냉난방 에너지 성능평가 (Building Energy Savings due to Incorporated Daylight-Glazing Systems)

  • 김정태;안현태;김곤
    • 조명전기설비학회논문지
    • /
    • 제19권6호
    • /
    • pp.1-8
    • /
    • 2005
  • 건물 내에 존재하는 자연광은 조명원으로 국한되지 않고 시각적, 심리적 자극을 통한 실내 환경의 질적 향상에 이르기까지 에너지절약 및 공간의 쾌적성에 큰 영향을 미친다. 유입되는 자연광량에 비례적으로 연동되는 건물에너지는 전기조명에너지를 절감시키고 난방 기간동안 일사열의 유입에 따른 난방에너지를 절감시킨다. 여름철에는 전기조명의 소등으로 인한 조명원의 발열량이 감소됨으로써 냉방부하의 감소에 이르기까지 포괄적인 영향을 미친다. 조명개발분야의 선진국에서는 에너지 절약형 광원의 대체와 아울러 자연채광과 통합된 최적 조명제어 기술의 운용만이 건물이 가지고 있는 에너지 절약의 잠재력을 현실화시킬 수 있다고 판단하고 있다. 따라서 본 연구는 일반적인 사무소 모델 공간의 에너지 절약형 인공조명을 대상으로 자연광 유입에 따른 연동적 조명제어 기법을 적용하는 경우를 대상으로, 인공조명의 소등량에 따른 조명에너지의 절감량과 이에 수반되는 냉방에너지의 점감량 및 일사열 취즉에 따른 겨울철 난방 부하 절감량을 분석함으로써 자연채광의 건물에너지에 대한 연간 기여도를 통합 분석하였다. 특히 자연채광의 성능은 실험을 통한 측정 데이터를 이용하고 에너지 해석 프로그램을 재구성하여 실질적인 절감량을 도출하도록 시도하였다.