• 제목/요약/키워드: Daubechies Wavelet

Search Result 116, Processing Time 0.029 seconds

Internal Fault Detection and Fault Type Discrimination for AC Generator Using Detail Coefficient Ratio of Daubechies Wavelet Transform (다우비시 웨이브릿 변환의 상세계수 비율을 이용한 교류발전기의 내부고장 검출 및 고장종류 판별)

  • Park, Chul-Won;Shin, Kwang-Chul;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.136-141
    • /
    • 2009
  • An AC generator is an important components in producing a electric power and so it requires highly reliable protection relays to minimize the possibility of demage occurring under fault conditions. Conventionally, a DFT based RDR has been used for protecting the generator stator winding. However, when DFTs based on Fourier analysis are used, it has been pointed out that defects can occur during the process of transforming a time domain signal into a frequency domain one which can lead to loss of time domain information. This paper proposes the internal fault detection and fault type discrimination for the stator winding by applying the detailed coefficients by Daubechies Wavelet Transform to overcome the defects in the DFT process. For the case studies reported in the paper, a model system was established for the simulations utilizing the ATP, and this verified the effectiveness of the proposed technique through various off-line tests carried out on the collected data. The propose method is shown to be able to rapidly identify internal fault and did not operate a miss-operation for all the external fault tested.

Compression of time-varying volume data using Daubechies D4 filter (Daubechies D4 필터를 사용한 시간가변(time-varying) 볼륨 데이터의 압축)

  • Hur, Young-Ju;Lee, Joong-Youn;Koo, Gee-Bum
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.982-987
    • /
    • 2007
  • The necessity of data compression scheme for volume data has been increased because of the increase of data capacity and the amount of network uses. Now we have various kinds of compression schemes, and we can choose one of them depending on the data types, application fields, the preferences, etc. However, the capacity of data which is produced by application scientists has been excessively increased, and the format of most scientific data is 3D volume. For 2D image or 3D moving pictures, many kinds of standards are established and widely used, but for 3D volume data, specially time-varying volume data, it is very difficult to find any applicable compression schemes. In this paper, we present a compression scheme for encoding time-varying volume data. This scheme is aimed to encoding time-varying volume data for visualization. This scheme uses MPEG's I- and P-frame concept for raising compression ratio. Also, it transforms volume data using Daubechies D4 filter before encoding, so that the image quality is better than other wavelet-based compression schemes. This encoding scheme encodes time-varying volume data composed of single precision floating-point data. In addition, this scheme provides the random reconstruction accessibility for an unit, and can be used for compressing large time-varying volume data using correlation between frames while preserving image qualities.

  • PDF

A Design of Parallel Processing for Wavelet Transformation on FPGA (ICCAS 2005)

  • Ngowsuwan, Krairuek;Chisobhuk, Orachat;Vongchumyen, Charoen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.864-867
    • /
    • 2005
  • In this paper we introduce a design of parallel architecture for wavelet transformation on FPGA. We implement wavelet transforms though lifting scheme and apply Daubechies4 transform equations. This technique has an advantage that we can obtain perfect reconstruction of the data. We divide our process to high pass filter and low pass filter. With this division, we can find coefficients from low and high pass filters simultaneously using parallel processing properties of FPGA to reduce processing time. From the equations, we have to design real number computation module, referred to IEEE754 standard. We choose 32 bit computation that is fine enough to reconstruct data. After that we arrange the real number module according to Daubechies4 transform though lifting scheme.

  • PDF

The FPGA Implementation of Wavelet Transform Chip using Daubechies′4 Tap Filter for DSP Application

  • Jeong, Chang-Soo;Kim, Nam-Young
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.376-379
    • /
    • 1999
  • The wavelet transform chip is implemented with Daubechies' 4 tap filter. It works at 20MHz in Field Programmable Gate array (FPGA) implementation of Quadrature Mirror Filter(QMF) Lattice Structure. In this paper, the structure contains taro-channel quadrature mirror filter, data format converter(DFC), delay control unit(DCU), and three 20$\times$8 bits real multiplier. The structures for the DFC and DCU need to he regular and scalable, require minimum number of regular, and thereby lead to an efficient and scalable architecture for the Discrete Wavelet Transform(DWT). These results present the possibility that it can be used in Digital Signal Processing(DSP) application faster than Fourier transform at small area with lour cost.

  • PDF

A Selection of an Optimal Mother Wavelet for Stator Fault Detection of AC Generator (교류 발전기 고정자 사고 검출을 위한 최적 마더 웨이브릿의 선정)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.377-382
    • /
    • 2008
  • For stator winding protection of AC generator, KCL(Kirchhoff's Current Law) is widely applied. Actually a CRDR(Current Ratio Differential Relay) based on DFT(Discrete Fourier Transform) has been used for protecting generator. It has been pointed out that defects can occur during the process of transforming a time domain signal into a frequency domain one which can lead to loss of time domain information. Wavelets techniques are proposed for the analysis of power system transients. This paper introduces an algorithm to choose a suitable Mother Wave1et for generator stator fault detection. For optimal selection, we analyzed db(Daubechies), sym(Symlets), and coif(Coiflects) of Mother Wavelet. And we compared with performance of the choice algorithm using detail coefficients energy and RMS(root mean square) error. It can be improved the reliability of the conventional DFT based CRDR. The feasibility and effectiveness of the proposed scheme is proved with simulation using collected data obtained from ATP (Alternative Transient Program) package.

A Iris Recognition Using Zernike Moment and Wavelet (Zernike 모멘트와 Wavelet을 이용한 홍채인식)

  • Choi, Chang-Soo;Park, Jong-Cheon;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4568-4575
    • /
    • 2010
  • Iris recognition is a biometric technology that uses iris pattern information, which has features of stability, security etc. Because of this reason, it is especially appropriate under certain circumstances of requiring a high security. Recently, using the iris information has a variety uses in the fields of access control and information security. In extracting the iris feature, it is desirable to extract the feature which is invariant to size, lights, rotation. We have easy solutions to the problem of iris size and lights by previous processing but there is still problem of iris feature extract invariant to rotation. In this paper, To improve an awareness ratio and decline in speed for a revision of rotation, it is proposed that the iris recognition method using Zernike Moment and Daubechies Wavelet. At first step, the proposed method groups rotated iris into similar things by statistical feature of Zernike Moment invariant to a rotation, which shortens processing time of iris recognition and looks equal to an established method in the performance of recognition too. therefore, proposed method could confirm the possibility of effective application for large scale iris recognition system.

Application of Wavelet Transform for Fault Discriminant of Generator (발전기의 고장 판별을 위한 웨이브릿 변환의 적용)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • Generators are the most complex and expensive single element in a power system. The generator protection relays should to minimize damage during fault states and must be designed for maximum reliability. A conventional CDR(Current Differential Relaying) technique based on DFT(Discrete Fourier Transform) filter have the disadvantages that the time information can lead to loss in the process of converting the signal from the time domain to the frequency domain. A WT(Wavelet transform) and WT analysis is known that it is possible with the local analysis of the fault and transient signal. In this paper, to overcome the defects in the DFT process, an application of WT for fault detection of generator is presented. This paper describes an selection of mother Wavelet to detect faults of generator. Using collected data from the fault simulation with ATPdraw, we analyzed the several mother Wavelet through the course of MLD(multi-level decomposition) using MATLAB software. Finally, it can be seen that the proposed technique using detail coefficient of Daubechies level 2 which can be fault discriminant of generator.

Wavelet Smoothing을 이용한 MRI 데이터에서의 Intensity Non-uniformity 보정

  • 김양현;류완석;정성택
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.75-75
    • /
    • 2003
  • 목적: MR 영상에 나타나는 bias field, 즉 영상의 특정 부분이 주위보다 어둡거나 밝게 나타나는 현상을 보다 균일하게 보정시키는 방법으로 제시된 N3 방법에서 Gaussian kernel을 사용한 smoothing 방법 대신에 Wavelet(Daubechies, D4)함수를 smoothing기법으로 사용했을 때 어느 정도 균일함에 향상이 일어나는지를 알아보는 것이다.

  • PDF

Design of the Wavelet Transform Domain Sign Algorithm (웨이블릿 변환영역 사인(Sign) 알고리즘의 설계)

  • Lee, Woong-Jae;Yoo, Kyung-Yul
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2442-2444
    • /
    • 1998
  • This paper presents a method for designing a multiresolution orthogonal wavelet transform matrix and it is extended to the establishment of the wavelet transform domain sign algorithms(SA). It outperforms the conventional sign algorithm, with performance comparable to the LMS algorithm. Together with Daubechies type 1 wavelet, we could also save additional computations which are required in transforming data.

  • PDF

New Mexican Hat, a Discrete Reconstruction Theorem of $L^1$-Wavelets and Their Applications (새로운 Mexican Hat, $L^1$-웨이브릿의 이산복원정리와 그 응용)

  • 안주원;허영대;권기룡;류권열;문광석
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.461-469
    • /
    • 2000
  • A wavelet analysis in a field of analytics is to create a reconstruction theorem of Plancherel form. And a series of wavelet is to create a discrete is to create a discrete reconstruction theorem for a frame theory and a multiresolution analysis theory. As a generation of reconstruction theorem, a wavelet correspond to it is generated. That is to be like a basic wavelet which is satisfied an admissibility condition in CWT and a Daubechies wavelet using MRA in wavelet series and a Meyer wavelet using a frame theory. In this paper, we discover a discrete reconstruction theorem which is superior to a conventional discrete reconstruction theorem by extending admissibility condition used in CWT and develop a New $L^1$-wavelet group. A new $L^1$-wavelet is applied to a signal reconstruction and a signal analysis in time-frequency region.

  • PDF