
ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

1. INTRODUCTION

As we known the digital image processing system requires
high speed and efficient processing unit to run in real-time
systems. Traditional approach can be processed using PC with
the high speed and performance such as mainframe. Therefore,
the regular personal computer is not suitable if we want to
work in real time system. At present, people prefer a small
system which can process correctly and fast. Therefore, our
research present a designing of wavelet transform through
lifting scheme implementing on small FPGA system. The
wavelet transform is widely used in signal processing.
Moreover, wavelet transform can be applied in many
applications [1, 2]. The accuracy of wavelet transform
depends on the design of low and high pass filter, which
represent the scaling function of the Mother wavelet. The
results from scaling function is down-sampled[3]. The
advantage of the proposed method is that it can process
wavelet transformation of an image fast and efficient.

Typically, the image and digital signal processing
applications require high calculation throughput [4, 5]. The
arithmetic operators presented here are implemented for real
time signal processing. We design floating-point arithmetic
based on IEEE754 standard [6]. We designed 32-bit
floating-point computation which is fine enough for image and
digital signal processing application. After that, we arrange
our floating-point arithmetic unit according to Daubechies4
transform though lifting scheme equation [7, 8]. All constants
of equations are transformed to the format according to
IEEE754 before processed to reduce complexity of the
computation. The results of Daubechies4 equations consist of
approximation and detail. In this module, we can use parallel
processing properties of FPGA to calculate approximation and
detail simultaneously.

2. OVERVIEW OF THE PROPOSED DWT

ARCHITECTURE ON FPGA

The overview structure of DWT is shown in Fig.1. First,
this module receives 32-bit input which is already in IEEE754
standard format. Next, the input is processed with
Daubechies4 equations within module. Internal structure of
the module composes of floating-point units which can
compute addition, subtraction and multiplication according to
the equations. The results are the coefficients of both low and
high filters. We call the results as “approximation” and

“detail” respectively. The designing and internal structure will
be described in next section.

Fig. 1 Internal structure of DWT

2.1 Floating Point Format Representation

The designing of real number computation module is
referred to IEEE754 standard. We use 32 bit format as shown
in Fig.2. “s” is sign bit, “c” is exponent field and “f” is
mantissa field to collect floating-point. The value of each part
can be calculated as shown in Eq. (1).

Fig. 2 32 Bit Floating Point Format.

2.2 Floating Addition and Subtraction

 Most of addition and subtraction process of real number
follows the same processing step to get the result. However,
there are some different parts needed to be changed from
minus to addition as shown in Fig. 4 in stage 2 above 24-bit
register (R24). Fig.3 shows all fields of input data. V1 is the
first input data, which can be an addenda or a subtrahend. V2
is the second input data, which can be an addenda or a
subtrahend also. Addition and Subtraction process can be
separated into 3 stages as followed:

Fig. 3 Show all field of input data.

A Design of Parallel Processing for Wavelet Transformation on FPGA

(ICCAS 2005)

Krairuek Ngowsuwan*, Orachat Chisobhuk**, and Charoen Vongchumyen***
Department of Computer Engineering Faculty of Engineering

King Mongkut’s Institute of Technology Ladkrabang
Ladkrabang, Bangkok, Thailand, 10520

Abstract: In this paper we introduce a design of parallel architecture for wavelet transformation on FPGA. We implement wavelet
transforms though lifting scheme and apply Daubechies4 transform equations. This technique has an advantage that we can obtain
perfect reconstruction of the data. We divide our process to high pass filter and low pass filter. With this division, we can find
coefficients from low and high pass filters simultaneously using parallel processing properties of FPGA to reduce processing time.
From the equations, we have to design real number computation module, referred to IEEE754 standard. We choose 32 bit
computation that is fine enough to reconstruct data. After that we arrange the real number module according to Daubechies4
transform though lifting scheme.

864

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

Fig. 4 Three stage 32 bit floating-point adder/subtractor.

Stage: 1
• Consider the both of input data if absolute value of

V1 less than absolute value of V2, then alternate V1
and V2. The absolute value can be obtained by edit
the part of exponent and mantissa term.

• Minus the exponent term of both input data for
specified shifting position of f2.

Stage: 2
• Shift bit of 1.f2 to the left.
• If the value of s1 equal to s2 then combine the value

of 1.f1 and 1.f2 together.
• If s1 and s2 are not equal then minus the value of

1.f1 and 1.f2.
• Keep sign bit (s1) from result of input data (V1).

Stage: 3
• Normalize value in 24-bit register(R24) by shifting

bit to left side until the left most bit of this register
has the value of ‘1’.

• Adjust exponent value by subtract exponent term
with the time of shifting bit in R24.

2.3 Floating-Point Multiplication

 Real number multiplication is similar to integer
multiplication because real number data is collected sign and
value (Sign-Magnitude). Real number multiplication is done
without sign and adapted some values to get accurate result as
shown in Fig. 4. We separate real number multiplication
process to 3 states.

Fig. 5 Three stage 32 bit floating-point multiplier.

Stage: 1

• Add c1 and c2 then keep the result in 9-bit register
(R9).

• Add left most bit of f1 and f2 then keep the result in
24-bit register (R24).

• Keep value of s1 and s2 in 1-bit register (R1).

Stage: 2
• Apply integer multiplication with input 1.f1 and 1.f2

then keep the result in 24-bit registers (R24).
• Adjust value of exponent term by subtracting with

bias.
• Compare sign bit s1 and s2 if sign bits are the same

so the result is positive, otherwise is negative.

Stage: 3
• Normalize value for 23-bit register (R23).
• The result consists of three parts, which are sign bit,

exponent and mantissa term.

2.4 Implementing the DWT through Lifting

 The calculation applied to all wavelet transforms through
lifting can be implemented in two different basic methods.
First method is initiated by determining the value of s(1) [n],
then substituting this value on d(1) [n] . The value from the
equation (2) is substituted to equation (3) and so on until
equation (6). The advantage of this method is that it can be
programmed easily but requires more memory space to store
result. As a result, this method may not be suitable for
designing FPGA.

]12[3]2[][)1(++= nSnSns (2)

]1[
4

23][3
4
1]12[][)1()1()1(−

−
−−+= nsnsnSnd (3)

]1[][)1()1()2(+−= ndnss (4)

865

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

][
2

13][)2(nsns −
= (5)

])[1(
2

13][ndnd +
= (6)

In the second approach, we will deduce the Eq. (2) to Eq. (6);
it becomes two equations for high pass and low pass filters in
order to determine approximation and detail coefficients.
The advantage of this method is that it can be adapted to fit
with data flow of FPGA.

2.5 Design and Architecture

 To design data flow of DWT though lifting scheme using
Daubechies4 equations, we need to arrange the equations.
With appropriate arrangement, the proposed system becomes
less complex. Consider equation (7) and (8), which is obtained
from solving Daubechies4 equations. There are only 2
equations left to find approximation and detail respectively.

]32[(])12[3]2[{(
2

13][+−++
−

= nSnSnSns

])32[3]22[(3
4
1

+++− nSnS

]))}12[3]2[(
4

23
++

−
− nSnS (7)

]2[(3
4
1]12[{

2
13][nSnSnd −+

+
=

]22[(
4

23])12[3 −
−

−++ nSnS

])}12[3 −+ nS (8)

After that, these equations are used to make data flow as
shown in Fig. 6(a) and (b). From both figures, we can notice
that there are some overlapped parts. Therefore, we can
combine these parts together to save environment resource as
shown in Fig.7.

(a)

(b)

Fig. 6 Data flow of low pass filter and high pass filter used to

find approximation (a) and detail (b).

Fig. 6 Complete data flow.

3. EXPERIMENT

In our experiment, we selected images form the set of
standard ISO test image with resolution of 256 x 256 pixels.
Example image used to test DWT transform is show in Fig.8.
We begin by loading an image to the memory. Next, image in
memory is read by FPGA to process as shown in Fig. 8 (b).
Then, we increase image brightness by 128 to the parts of LH,
HL, and HH for clarity of details. After that we use result data
to be an input and reconstruct image to check the error. The
process is tested on real time system. The proposed
architecture is implemented as explained in previous sections.
From the experiment, we found that our system can process 30
images within an average of 1 second as shown in table 1.

Our experiment system use devices and equipments as
followed:

• FPGA Board: FPGA Xilinx Virtex-II 1000 with
SDRAM 64MByte.

• PC: CPU Intel Pentium III 1.13 GHz (Tulatin),
SDRAM 768MByte

866

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

 (a) (b) (c)

Table 1 Processing time for our system.

 1 Image Error 30 Images Error
PC. 0.089843 Sec. 0 2.644531 Sec. 0
FPGA 0.015236 Sec. 0 0.5470958 Sec. 0

4. CONCLUSION

In this paper, a design of parallel architecture for wavelet

transformation on FPGA presented. We begin the design with
floating-point computational unit, this unit is essential because
it is arranged according to Daubechies4 though lifting. The
objective of this paper is to apply FPGA to DWT process to
reduce processing time. From the experiment, we found that
our system can work on real-time system. System can process
30 images in less than 1 second. However, processing time
depends on many factors such as memory speed, CPU speed
on the board, because data will be sent and received from CPU
all the time. The proposed architecture can be applied on the
variety systems such as real time image compression, image
quantization, and JPEG 2000. Furthermore, the proposed
DWT can perfectly reconstruct data and can be applied in
lossless applications.

REFERENCES

[1] CK Chui, “An Introduction to Wavelet,” 1 ed. Wavelet

analysis and its application, Vol. 1. 1992.
[2] S Mallat, “A wavelet tour of signal processing,” 2 ed.

1998.
[3] N Fliege, Multiraten-Signalverarbeitung. Informationstechnik,

ed. N. Fliege. 1993.
[4] J.A. Eldon and C. Robertson, “A Floating Point Format

for Signal Processing,” Proceedings IEE International
Conference on Acoustics, Speech, and Signal Processing,
pp. 717-720, 1982.

[5] N. Shirazi, Implementation of a 2-D Fast Fourier
Transform on an FPGA Base Computing Platform,
VPI&SU Masters Thesis in progress. VPI&SU Masters
Thesis in progress.

[6] IEEE Task P754, “A Proposed for Binary Floating-Point
Arithmetic,” IEEE Computer, Vol. 14, No. 12, pp.51-62,
March 1981.

[7] I Daubechies and W Sweldens, Factoring transform into
lifting step, J. Fourier Anal. Appl., pp. 27, 1998.

[8] W Sweldent. “The lifting scheme: Anew philosophy in
biorthogonal wavelet constructions,” In Wavelet
Application in Signal and Image Processing III. 1995.

[9] J.M Aronold, D.A Buell and E.G. Davis, “Splash 2,”
Proceedings of the 4th Annual ACM Symposium on
Parallel Algorithms and Architectures, pp. 316-322, June
1992.

[10] Xilinx, Inc., Programmable Logic Design Quick Start
Handbook, Karen Parnell and Nick Mehta, 2003.

867

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

