• 제목/요약/키워드: Dataset Type

검색결과 279건 처리시간 0.025초

The Study for Type of Mask Wearing Dataset for Deep learning and Detection Model (딥러닝을 위한 마스크 착용 유형별 데이터셋 구축 및 검출 모델에 관한 연구)

  • Hwang, Ho Seong;Kim, Dong heon;Kim, Ho Chul
    • Journal of Biomedical Engineering Research
    • /
    • 제43권3호
    • /
    • pp.131-135
    • /
    • 2022
  • Due to COVID-19, Correct method of wearing mask is important to prevent COVID-19 and the other respiratory tract infections. And the deep learning technology in the image processing has been developed. The purpose of this study is to create the type of mask wearing dataset for deep learning models and select the deep learning model to detect the wearing mask correctly. The Image dataset is the 2,296 images acquired using a web crawler. Deep learning classification models provided by tensorflow are used to validate the dataset. And Object detection deep learning model YOLOs are used to select the detection deep learning model to detect the wearing mask correctly. In this process, this paper proposes to validate the type of mask wearing datasets and YOLOv5 is the effective model to detect the type of mask wearing. The experimental results show that reliable dataset is acquired and the YOLOv5 model effectively recognize type of mask wearing.

Knowledge Model for Disaster Dataset Navigation

  • Hwang, Yun-Young;Yuk, Jin-Hee;Shin, Sumi
    • Journal of Information Science Theory and Practice
    • /
    • 제9권4호
    • /
    • pp.35-49
    • /
    • 2021
  • In a situation where there are multiple diverse datasets, it is essential to have an efficient method to provide users with the datasets they require. To address this suggestion, necessary datasets should be selected on the basis of the relationships between the datasets. In particular, in order to discover the necessary datasets for disaster resolution, we need to consider the disaster resolution stage. In this paper, in order to provide the necessary datasets for each stage of disaster resolution, we constructed a disaster type and disaster management process ontology and designed a method to determine the necessary datasets for each disaster type and disaster management process step. In addition, we introduce a method to determine relationships between datasets necessary for disaster response. We propose a method for discovering datasets based on minimal relationships such as "isA," "sameAs," and "subclassOf." To discover suitable datasets, we designed a knowledge exploration model and collected 651 disaster-related datasets for improving our method. These datasets were categorized by disaster type from the perspective of disaster management. Categorizing actual datasets into disaster types and disaster management types allows a single dataset to be classified as multiple types in both categories. We built a knowledge exploration model on the basis of disaster examples to ensure the configuration of our model.

Development of Dataset Items for Commercial Space Design Applying AI

  • Jung Hwa SEO;Segeun CHUN;Ki-Pyeong, KIM
    • Korean Journal of Artificial Intelligence
    • /
    • 제11권1호
    • /
    • pp.25-29
    • /
    • 2023
  • In this paper, the purpose is to create a standard of AI training dataset type for commercial space design. As the market size of the field of space design continues to increase and the time spent increases indoors after COVID-19, interest in space is expanding throughout society. In addition, more and more consumers are getting used to the digital environment. Therefore, If you identify trends and preemptively propose the atmosphere and specifications that customers require quickly and easily, you can increase customer trust and conduct effective sales. As for the data set type, commercial districts were divided into a total of 8 categories, and images that could be processed were derived by refining 4,009,30MB JPG format images collected through web crawling. Then, by performing bounding and labeling operations, we developed a 'Dataset for AI Training' of 3,356 commercial space image data in CSV format with a size of 2.08MB. Through this study, elements of spatial images such as place type, space classification, and furniture can be extracted and used when developing AI algorithms, and it is expected that images requested by clients can be easily and quickly collected through spatial image input information.

A Study on Managing Dataset Records in Government Information Systems (행정정보 데이터세트 기록의 관리방안)

  • Wang, Ho-sung;Seol, Moon-won
    • Journal of Korean Society of Archives and Records Management
    • /
    • 제17권3호
    • /
    • pp.23-47
    • /
    • 2017
  • According to a recent survey, over 18,000 government information systems have numerous different functions and characteristics. Although every dataset that is created and maintained in government information systems is declared as a collection of records according to the Public Records Management Act, current electronic records management policies cannot cover dataset records management. This study suggests the policy directions for dataset records management at the national level. It emphasizes the necessity to preserve the appearance and behavior (function) of database systems to ensure the authenticity of dataset records. In addition, this study investigates "emulation" as a representation and long-term preservation methodology for dataset-type records. It also suggests a dataset records model.

Ensemble Modulation Pattern based Paddy Crop Assist for Atmospheric Data

  • Sampath Kumar, S.;Manjunatha Reddy, B.N.;Nataraju, M.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.403-413
    • /
    • 2022
  • Classification and analysis are improved factors for the realtime automation system. In the field of agriculture, the cultivation of different paddy crop depends on the atmosphere and the soil nature. We need to analyze the moisture level in the area to predict the type of paddy that can be cultivated. For this process, Ensemble Modulation Pattern system and Block Probability Neural Network based classification models are used to analyze the moisture and temperature of land area. The dataset consists of the collections of moisture and temperature at various data samples for a land. The Ensemble Modulation Pattern based feature analysis method, the extract of the moisture and temperature in various day patterns are analyzed and framed as the pattern for given dataset. Then from that, an improved neural network architecture based on the block probability analysis are used to classify the data pattern to predict the class of paddy crop according to the features of dataset. From that classification result, the measurement of data represents the type of paddy according to the weather condition and other features. This type of classification model assists where to plant the crop and also prevents the damage to crop due to the excess of water or excess of temperature. The result analysis presents the comparison result of proposed work with the other state-of-art methods of data classification.

Novel estimation based on a minimum distance under the progressive Type-II censoring scheme

  • Young Eun Jeon;Suk-Bok Kang;Jung-In Seo
    • Communications for Statistical Applications and Methods
    • /
    • 제30권4호
    • /
    • pp.411-421
    • /
    • 2023
  • This paper provides a new estimation equation based on the concept of a minimum distance between the empirical and theoretical distribution functions under the most widely used progressive Type-II censoring scheme. For illustrative purposes, simulated and real datasets from a three-parameter Weibull distribution are analyzed. For comparison, the most popular estimation methods, the maximum likelihood and maximum product of spacings estimation methods, are developed together. In the analysis of simulated datasets, the excellence of the provided estimation method is demonstrated through the degree of the estimation failure of the likelihood-based method, and its validity is demonstrated through the mean squared errors and biases of the estimators obtained from the provided estimation equation. In the analysis of the real dataset, two types of goodness-of-fit tests are performed on whether the observed dataset has the three-parameter Weibull distribution under the progressive Type-II censoring scheme, through which the performance of the new estimation equation provided is examined.

Design of Data-centroid Radial Basis Function Neural Network with Extended Polynomial Type and Its Optimization (데이터 중심 다항식 확장형 RBF 신경회로망의 설계 및 최적화)

  • Oh, Sung-Kwun;Kim, Young-Hoon;Park, Ho-Sung;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제60권3호
    • /
    • pp.639-647
    • /
    • 2011
  • In this paper, we introduce a design methodology of data-centroid Radial Basis Function neural networks with extended polynomial function. The two underlying design mechanisms of such networks involve K-means clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on K-means clustering method for efficient processing of data and the optimization of model was carried out using PSO. In this paper, as the connection weight of RBF neural networks, we are able to use four types of polynomials such as simplified, linear, quadratic, and modified quadratic. Using K-means clustering, the center values of Gaussian function as activation function are selected. And the PSO-based RBF neural networks results in a structurally optimized structure and comes with a higher level of flexibility than the one encountered in the conventional RBF neural networks. The PSO-based design procedure being applied at each node of RBF neural networks leads to the selection of preferred parameters with specific local characteristics (such as the number of input variables, a specific set of input variables, and the distribution constant value in activation function) available within the RBF neural networks. To evaluate the performance of the proposed data-centroid RBF neural network with extended polynomial function, the model is experimented with using the nonlinear process data(2-Dimensional synthetic data and Mackey-Glass time series process data) and the Machine Learning dataset(NOx emission process data in gas turbine plant, Automobile Miles per Gallon(MPG) data, and Boston housing data). For the characteristic analysis of the given entire dataset with non-linearity as well as the efficient construction and evaluation of the dynamic network model, the partition of the given entire dataset distinguishes between two cases of Division I(training dataset and testing dataset) and Division II(training dataset, validation dataset, and testing dataset). A comparative analysis shows that the proposed RBF neural networks produces model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

Multi-type Image Noise Classification by Using Deep Learning

  • Waqar Ahmed;Zahid Hussain Khand;Sajid Khan;Ghulam Mujtaba;Muhammad Asif Khan;Ahmad Waqas
    • International Journal of Computer Science & Network Security
    • /
    • 제24권7호
    • /
    • pp.143-147
    • /
    • 2024
  • Image noise classification is a classical problem in the field of image processing, machine learning, deep learning and computer vision. In this paper, image noise classification is performed using deep learning. Keras deep learning library of TensorFlow is used for this purpose. 6900 images images are selected from the Kaggle database for the classification purpose. Dataset for labeled noisy images of multiple type was generated with the help of Matlab from a dataset of non-noisy images. Labeled dataset comprised of Salt & Pepper, Gaussian and Sinusoidal noise. Different training and tests sets were partitioned to train and test the model for image classification. In deep neural networks CNN (Convolutional Neural Network) is used due to its in-depth and hidden patterns and features learning in the images to be classified. This deep learning of features and patterns in images make CNN outperform the other classical methods in many classification problems.

Distributed Denial of Service Defense on Cloud Computing Based on Network Intrusion Detection System: Survey

  • Samkari, Esraa;Alsuwat, Hatim
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.67-74
    • /
    • 2022
  • One type of network security breach is the availability breach, which deprives legitimate users of their right to access services. The Denial of Service (DoS) attack is one way to have this breach, whereas using the Intrusion Detection System (IDS) is the trending way to detect a DoS attack. However, building IDS has two challenges: reducing the false alert and picking up the right dataset to train the IDS model. The survey concluded, in the end, that using a real dataset such as MAWILab or some tools like ID2T that give the researcher the ability to create a custom dataset may enhance the IDS model to handle the network threats, including DoS attacks. In addition to minimizing the rate of the false alert.

The Design of Polynomial RBF Neural Network by Means of Fuzzy Inference System and Its Optimization (퍼지추론 기반 다항식 RBF 뉴럴 네트워크의 설계 및 최적화)

  • Baek, Jin-Yeol;Park, Byaung-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제58권2호
    • /
    • pp.399-406
    • /
    • 2009
  • In this study, Polynomial Radial Basis Function Neural Network(pRBFNN) based on Fuzzy Inference System is designed and its parameters such as learning rate, momentum coefficient, and distributed weight (width of RBF) are optimized by means of Particle Swarm Optimization. The proposed model can be expressed as three functional module that consists of condition part, conclusion part, and inference part in the viewpoint of fuzzy rule formed in 'If-then'. In the condition part of pRBFNN as a fuzzy rule, input space is partitioned by defining kernel functions (RBFs). Here, the structure of kernel functions, namely, RBF is generated from HCM clustering algorithm. We use Gaussian type and Inverse multiquadratic type as a RBF. Besides these types of RBF, Conic RBF is also proposed and used as a kernel function. Also, in order to reflect the characteristic of dataset when partitioning input space, we consider the width of RBF defined by standard deviation of dataset. In the conclusion part, the connection weights of pRBFNN are represented as a polynomial which is the extended structure of the general RBF neural network with constant as a connection weights. Finally, the output of model is decided by the fuzzy inference of the inference part of pRBFNN. In order to evaluate the proposed model, nonlinear function with 2 inputs, waster water dataset and gas furnace time series dataset are used and the results of pRBFNN are compared with some previous models. Approximation as well as generalization abilities are discussed with these results.