References
- F. Russo, Edge detection in noisy images using fuzzy reasoning. IEEE Trans. Instr. and Meas. 47(5), 1102-1105 (1998) https://doi.org/10.1109/19.746564
- Khan, S., Lee, D. H., Khan, M. A., Gilal, A. R., Iqbal, J., & Waqas, A. (2020). Efficient and improved edge detection via a hysteresis thresholding method. Current Science (00113891), 118(6).
- Bustince, H., Barrenechea, E., Pagola, M., & Fernandez, J. (2009). Interval-valued fuzzy sets constructed from matrices: Application to edge detection. Fuzzy Sets and systems, 160(13), 1819-1840. https://doi.org/10.1016/j.fss.2008.08.005
- Khan, S., Lee, D. H., Khan, M. A., Gilal, A. R., & Mujtaba, G. (2019). Efficient edge-based image interpolation method using neighboring slope information. IEEE Access, 7, 133539-133548. https://doi.org/10.1109/ACCESS.2019.2942004
- Khan, S., & Lee, D. (2015). Efficient deinterlacing method using simple edge slope tracing. Optical Engineering, 54(10), 103108.
- Khan, S., Lee, D. H., Khan, M. A., Siddiqui, M. F., Zafar, R. F., Memon, K. H., & Mujtaba, G. (2020). Image Interpolation via Gradient Correlation-Based Edge Direction Estimation. Scientific Programming, 2020.
- Khan, S., Lee, D. H., Khan, A., Waqas, A., Gilal, A. R., & Khand, Z. H. (2020). A Digital Camera-Based Rotation-Invariant Fingerprint Verification Method. Scientific Programming, 2020.
- Khan, S., Waqas, A., Khan, M. A., & Ahmad, A. W. (2018). A camera-based fingerprint registration and verification method. International Journal of Computer Science and Network Security, 18(11), 26-31.
- Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D. D., & Chen, M. (2014, December). Medical image classification with convolutional neural network. In 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV) (pp. 844-848). IEEE.
- E. Abreu, M. Lightstone, S.K. Mitra, K. Arakawa, A new efficient approach for the removal of impulse noise from highly corrupted image. IEEE Trans. Image Process. 5(6), 1012-1025 (1996) https://doi.org/10.1109/83.503916
- H.L. Eng, K.K. Ma, Noise adaptive soft-switching median filter. IEEE Trans. Image Process. 10(2), 242-251 (2001) https://doi.org/10.1109/83.902289
- Wang, T., Qiu J., Fu, S., Ji, W.: Distributed fuzzy H∞ filtering for nonlinear multirate networked double-layer industrial processes. IEEE Trans. Industrial Electronics 64(6), 5203-5211 (2017) https://doi.org/10.1109/TIE.2016.2622234
- P. Civicioglu, Using uncorrupted neighborhoods of the pixels for impulsive noise suppression with ANFIS. IEEE Trans. Image Process. 16(3), 759-773 (2007) https://doi.org/10.1109/TIP.2007.891067
- Khan, S., & Lee, D. H. (2017). An adaptive dynamically weighted median filter for impulse noise removal. EURASIP Journal on Advances in Signal Processing, 2017(1), 67.
- Lee, D. H. (2012). An Edge-Based Adaptive Method for Removing High-Density Impulsive Noise from an Image While Preserving Edges. ETRI Journal, 34(4), 564-571. https://doi.org/10.4218/etrij.12.0111.0392
- Majeeth, S. S., & Babu, C. N. K. (2019). Gaussian noise removal in an image using fast guided filter and its method noise thresholding in medical healthcare application. Journal of medical systems, 43(8), 280.
- Varghese, J., Subhash, S., Subramaniam, K., & Sridhar, K. P. (2020). Adaptive Gaussian notch filter for removing periodic noise from digital images. IET Image Processing, 14(8), 1529-1538. https://doi.org/10.1049/iet-ipr.2018.5707
- Khaw, Hui Ying & Soon, Foo Chong & Chuah, Joon Huang & Chow, Chee Onn. (2017). Image Noise Types Recognition Using Convolutional Neural Network with Principal Components Analysis. IET Image Processing. 11. 10.1049/iet-ipr.2017.0374.
- Roy, Sudipta & Ahmed, Mahtab & Akhand, M. A. H.. (2018). Noisy image classification using hybrid deep learning methods. Journal of Information and Communication Technology. 17. 233-269. 10.32890/jict2018.17.2.4.
- Gorkem Algan & IIkay Ulusoy (2020). Image Classification with Deep Learning in the Presence of Noisy Labels: A Survey arXiv:1912.05170v2 [cs.LG]
- Koziarski, Michal & Cyganek, Boguslaw. (2017). Image recognition with deep neural networks in presence of noise - Dealing with and taking advantage of distortions. Integrated Computer-Aided Engineering. 24. 1-13. 10.3233/ICA-170551.
- Natual Images | Kaggle, https://www.kaggle.com/prasunroy/natural-images, last accessed: 20/07/2020.
- Add noise to image- Matlab imnoise https://www.mathworks.com/help/images/ref/imnoise.html, last accessed: 20/07/2020.