• Title/Summary/Keyword: Dataset Training

Search Result 652, Processing Time 0.031 seconds

Efficient Hangul Word Processor (HWP) Malware Detection Using Semi-Supervised Learning with Augmented Data Utility Valuation (효율적인 HWP 악성코드 탐지를 위한 데이터 유용성 검증 및 확보 기반 준지도학습 기법)

  • JinHyuk Son;Gihyuk Ko;Ho-Mook Cho;Young-Kuk Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.71-82
    • /
    • 2024
  • With the advancement of information and communication technology (ICT), the use of electronic document types such as PDF, MS Office, and HWP files has increased. Such trend has led the cyber attackers increasingly try to spread malicious documents through e-mails and messengers. To counter such attacks, AI-based methodologies have been actively employed in order to detect malicious document files. The main challenge in detecting malicious HWP(Hangul Word Processor) files is the lack of quality dataset due to its usage is limited in Korea, compared to PDF and MS-Office files that are highly being utilized worldwide. To address this limitation, data augmentation have been proposed to diversify training data by transforming existing dataset, but as the usefulness of the augmented data is not evaluated, augmented data could end up harming model's performance. In this paper, we propose an effective semi-supervised learning technique in detecting malicious HWP document files, which improves overall AI model performance via quantifying the utility of augmented data and filtering out useless training data.

An end-to-end synthesis method for Korean text-to-speech systems (한국어 text-to-speech(TTS) 시스템을 위한 엔드투엔드 합성 방식 연구)

  • Choi, Yeunju;Jung, Youngmoon;Kim, Younggwan;Suh, Youngjoo;Kim, Hoirin
    • Phonetics and Speech Sciences
    • /
    • v.10 no.1
    • /
    • pp.39-48
    • /
    • 2018
  • A typical statistical parametric speech synthesis (text-to-speech, TTS) system consists of separate modules, such as a text analysis module, an acoustic modeling module, and a speech synthesis module. This causes two problems: 1) expert knowledge of each module is required, and 2) errors generated in each module accumulate passing through each module. An end-to-end TTS system could avoid such problems by synthesizing voice signals directly from an input string. In this study, we implemented an end-to-end Korean TTS system using Google's Tacotron, which is an end-to-end TTS system based on a sequence-to-sequence model with attention mechanism. We used 4392 utterances spoken by a Korean female speaker, an amount that corresponds to 37% of the dataset Google used for training Tacotron. Our system obtained mean opinion score (MOS) 2.98 and degradation mean opinion score (DMOS) 3.25. We will discuss the factors which affected training of the system. Experiments demonstrate that the post-processing network needs to be designed considering output language and input characters and that according to the amount of training data, the maximum value of n for n-grams modeled by the encoder should be small enough.

DeepCleanNet: Training Deep Convolutional Neural Network with Extremely Noisy Labels

  • Olimov, Bekhzod;Kim, Jeonghong
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.11
    • /
    • pp.1349-1360
    • /
    • 2020
  • In recent years, Convolutional Neural Networks (CNNs) have been successfully implemented in different tasks of computer vision. Since CNN models are the representatives of supervised learning algorithms, they demand large amount of data in order to train the classifiers. Thus, obtaining data with correct labels is imperative to attain the state-of-the-art performance of the CNN models. However, labelling datasets is quite tedious and expensive process, therefore real-life datasets often exhibit incorrect labels. Although the issue of poorly labelled datasets has been studied before, we have noticed that the methods are very complex and hard to reproduce. Therefore, in this research work, we propose Deep CleanNet - a considerably simple system that achieves competitive results when compared to the existing methods. We use K-means clustering algorithm for selecting data with correct labels and train the new dataset using a deep CNN model. The technique achieves competitive results in both training and validation stages. We conducted experiments using MNIST database of handwritten digits with 50% corrupted labels and achieved up to 10 and 20% increase in training and validation sets accuracy scores, respectively.

A Comparative Study of Alzheimer's Disease Classification using Multiple Transfer Learning Models

  • Prakash, Deekshitha;Madusanka, Nuwan;Bhattacharjee, Subrata;Park, Hyeon-Gyun;Kim, Cho-Hee;Choi, Heung-Kook
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.209-216
    • /
    • 2019
  • Over the past decade, researchers were able to solve complex medical problems as well as acquire deeper understanding of entire issue due to the availability of machine learning techniques, particularly predictive algorithms and automatic recognition of patterns in medical imaging. In this study, a technique called transfer learning has been utilized to classify Magnetic Resonance (MR) images by a pre-trained Convolutional Neural Network (CNN). Rather than training an entire model from scratch, transfer learning approach uses the CNN model by fine-tuning them, to classify MR images into Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal control (NC). The performance of this method has been evaluated over Alzheimer's Disease Neuroimaging (ADNI) dataset by changing the learning rate of the model. Moreover, in this study, in order to demonstrate the transfer learning approach we utilize different pre-trained deep learning models such as GoogLeNet, VGG-16, AlexNet and ResNet-18, and compare their efficiency to classify AD. The overall classification accuracy resulted by GoogLeNet for training and testing was 99.84% and 98.25% respectively, which was exceptionally more than other models training and testing accuracies.

Influence on overfitting and reliability due to change in training data

  • Kim, Sung-Hyeock;Oh, Sang-Jin;Yoon, Geun-Young;Jung, Yong-Gyu;Kang, Min-Soo
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.2
    • /
    • pp.82-89
    • /
    • 2017
  • The range of problems that can be handled by the activation of big data and the development of hardware has been rapidly expanded and machine learning such as deep learning has become a very versatile technology. In this paper, mnist data set is used as experimental data, and the Cross Entropy function is used as a loss model for evaluating the efficiency of machine learning, and the value of the loss function in the steepest descent method is We applied the GradientDescentOptimize algorithm to minimize and updated weight and bias via backpropagation. In this way we analyze optimal reliability value corresponding to the number of exercises and optimal reliability value without overfitting. And comparing the overfitting time according to the number of data changes based on the number of training times, when the training frequency was 1110 times, we obtained the result of 92%, which is the optimal reliability value without overfitting.

Prediction of rebound in shotcrete using deep bi-directional LSTM

  • Suzen, Ahmet A.;Cakiroglu, Melda A.
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.555-560
    • /
    • 2019
  • During the application of shotcrete, a part of the concrete bounces back after hitting to the surface, the reinforcement or previously sprayed concrete. This rebound material is definitely not added to the mixture and considered as waste. In this study, a deep neural network model was developed to predict the rebound material during shotcrete application. The factors affecting rebound and the datasets of these parameters were obtained from previous experiments. The Long Short-Term Memory (LSTM) architecture of the proposed deep neural network model was used in accordance with this data set. In the development of the proposed four-tier prediction model, the dataset was divided into 90% training and 10% test. The deep neural network was modeled with 11 dependents 1 independent data by determining the most appropriate hyper parameter values for prediction. Accuracy and error performance in success performance of LSTM model were evaluated over MSE and RMSE. A success of 93.2% was achieved at the end of training of the model and a success of 85.6% in the test. There was a difference of 7.6% between training and test. In the following stage, it is aimed to increase the success rate of the model by increasing the number of data in the data set with synthetic and experimental data. In addition, it is thought that prediction of the amount of rebound during dry-mix shotcrete application will provide economic gain as well as contributing to environmental protection.

Event Detection on Motion Activities Using a Dynamic Grid

  • Preechasuk, Jitdumrong;Piamsa-nga, Punpiti
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.538-555
    • /
    • 2015
  • Event detection based on using features from a static grid can give poor results from the viewpoint of two main aspects: the position of the camera and the position of the event that is occurring in the scene. The former causes problems when training and test events are at different distances from the camera to the actual position of the event. The latter can be a source of problems when training events take place in any position in the scene, and the test events take place in a position different from the training events. Both issues degrade the accuracy of the static grid method. Therefore, this work proposes a method called a dynamic grid for event detection, which can tackle both aspects of the problem. In our experiment, we used the dynamic grid method to detect four types of event patterns: implosion, explosion, two-way, and one-way using a Multimedia Analysis and Discovery (MAD) pedestrian dataset. The experimental results show that the proposed method can detect the four types of event patterns with high accuracy. Additionally, the performance of the proposed method is better than the static grid method and the proposed method achieves higher accuracy than the previous method regarding the aforementioned aspects.

Management Software Development of Hyper Spectral Image Data for Deep Learning Training (딥러닝 학습을 위한 초분광 영상 데이터 관리 소프트웨어 개발)

  • Lee, Da-Been;Kim, Hong-Rak;Park, Jin-Ho;Hwang, Seon-Jeong;Shin, Jeong-Seop
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.111-116
    • /
    • 2021
  • The hyper-spectral image is data obtained by dividing the electromagnetic wave band in the infrared region into hundreds of wavelengths. It is used to find or classify objects in various fields. Recently, deep learning classification method has been attracting attention. In order to use hyper-spectral image data as deep learning training data, a processing technique is required compared to conventional visible light image data. To solve this problem, we developed a software that selects specific wavelength images from the hyper-spectral data cube and performs the ground truth task. We also developed software to manage data including environmental information. This paper describes the configuration and function of the software.

Optimal SVM learning method based on adaptive sparse sampling and granularity shift factor

  • Wen, Hui;Jia, Dongshun;Liu, Zhiqiang;Xu, Hang;Hao, Guangtao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1110-1127
    • /
    • 2022
  • To improve the training efficiency and generalization performance of a support vector machine (SVM) in a large-scale set, an optimal SVM learning method based on adaptive sparse sampling and the granularity shift factor is presented. The proposed method combines sampling optimization with learner optimization. First, an adaptive sparse sampling method based on the potential function density clustering is designed to adaptively obtain sparse sampling samples, which can achieve a reduction in the training sample set and effectively approximate the spatial structure distribution of the original sample set. A granularity shift factor method is then constructed to optimize the SVM decision hyperplane, which fully considers the neighborhood information of each granularity region in the sparse sampling set. Experiments on an artificial dataset and three benchmark datasets show that the proposed method can achieve a relatively higher training efficiency, as well as ensure a good generalization performance of the learner. Finally, the effectiveness of the proposed method is verified.

Semi-Supervised Domain Adaptation on LiDAR 3D Object Detection with Self-Training and Knowledge Distillation (자가학습과 지식증류 방법을 활용한 LiDAR 3차원 물체 탐지에서의 준지도 도메인 적응)

  • Jungwan Woo;Jaeyeul Kim;Sunghoon Im
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.346-351
    • /
    • 2023
  • With the release of numerous open driving datasets, the demand for domain adaptation in perception tasks has increased, particularly when transferring knowledge from rich datasets to novel domains. However, it is difficult to solve the change 1) in the sensor domain caused by heterogeneous LiDAR sensors and 2) in the environmental domain caused by different environmental factors. We overcome domain differences in the semi-supervised setting with 3-stage model parameter training. First, we pre-train the model with the source dataset with object scaling based on statistics of the object size. Then we fine-tine the partially frozen model weights with copy-and-paste augmentation. The 3D points in the box labels are copied from one scene and pasted to the other scenes. Finally, we use the knowledge distillation method to update the student network with a moving average from the teacher network along with a self-training method with pseudo labels. Test-Time Augmentation with varying z values is employed to predict the final results. Our method achieved 3rd place in ECCV 2022 workshop on the 3D Perception for Autonomous Driving challenge.