• 제목/요약/키워드: Database Mining

검색결과 574건 처리시간 0.027초

데이터마이닝 기법(CHAID)을 이용한 효과적인 데이터베이스 마케팅에 관한 연구 (A Study on the Effective Database Marketing using Data Mining Technique(CHAID))

  • 김신곤
    • 정보기술과데이타베이스저널
    • /
    • 제6권1호
    • /
    • pp.89-101
    • /
    • 1999
  • Increasing number of companies recognize that the understanding of customers and their markets is indispensable for their survival and business success. The companies are rapidly increasing the amount of investments to develop customer databases which is the basis for the database marketing activities. Database marketing is closely related to data mining. Data mining is the non-trivial extraction of implicit, previously unknown and potentially useful knowledge or patterns from large data. Data mining applied to database marketing can make a great contribution to reinforce the company's competitiveness and sustainable competitive advantages. This paper develops the classification model to select the most responsible customers from the customer databases for telemarketing system and evaluates the performance of the developed model using LIFT measure. The model employs the decision tree algorithm, i.e., CHAID which is one of the well-known data mining techniques. This paper also represents the effective database marketing strategy by applying the data mining technique to a credit card company's telemarketing system.

  • PDF

An Efficient Algorithm for Mining Frequent Sequences In Spatiotemporal Data

  • ;지정희;류근호
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2005년도 추계학술대회
    • /
    • pp.61-66
    • /
    • 2005
  • Spatiotemporal data mining represents the confluence of several fields including spatiotemporal databases, machine loaming, statistics, geographic visualization, and information theory. Exploration of spatial data mining and temporal data mining has received much attention independently in knowledge discovery in databases and data mining research community. In this paper, we introduce an algorithm Max_MOP for discovering moving sequences in mobile environment. Max_MOP mines only maximal frequent moving patterns. We exploit the characteristic of the problem domain, which is the spatiotemporal proximity between activities, to partition the spatiotemporal space. The task of finding moving sequences is to consider all temporally ordered combination of associations, which requires an intensive computation. However, exploiting the spatiotemporal proximity characteristic makes this task more cornputationally feasible. Our proposed technique is applicable to location-based services such as traffic service, tourist service, and location-aware advertising service.

  • PDF

IMPLEMENTATION OF SUBSEQUENCE MAPPING METHOD FOR SEQUENTIAL PATTERN MINING

  • Trang, Nguyen Thu;Lee, Bum-Ju;Lee, Heon-Gyu;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.627-630
    • /
    • 2006
  • Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.

  • PDF

Implementation of Subsequence Mapping Method for Sequential Pattern Mining

  • Trang Nguyen Thu;Lee Bum-Ju;Lee Heon-Gyu;Park Jeong-Seok;Ryu Keun-Ho
    • 대한원격탐사학회지
    • /
    • 제22권5호
    • /
    • pp.457-462
    • /
    • 2006
  • Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.

A Novel Approach for Mining High-Utility Sequential Patterns in Sequence Databases

  • Ahmed, Chowdhury Farhan;Tanbeer, Syed Khairuzzaman;Jeong, Byeong-Soo
    • ETRI Journal
    • /
    • 제32권5호
    • /
    • pp.676-686
    • /
    • 2010
  • Mining sequential patterns is an important research issue in data mining and knowledge discovery with broad applications. However, the existing sequential pattern mining approaches consider only binary frequency values of items in sequences and equal importance/significance values of distinct items. Therefore, they are not applicable to actually represent many real-world scenarios. In this paper, we propose a novel framework for mining high-utility sequential patterns for more real-life applicable information extraction from sequence databases with non-binary frequency values of items in sequences and different importance/significance values for distinct items. Moreover, for mining high-utility sequential patterns, we propose two new algorithms: UtilityLevel is a high-utility sequential pattern mining with a level-wise candidate generation approach, and UtilitySpan is a high-utility sequential pattern mining with a pattern growth approach. Extensive performance analyses show that our algorithms are very efficient and scalable for mining high-utility sequential patterns.

데이터 마이닝을 위한 생산공정 데이터 추출 (Data Extraction of Manufacturing Process for Data Mining)

  • 박홍균;이근안;최석우;이형욱;배성민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.118-122
    • /
    • 2005
  • Data mining is the process of autonomously extracting useful information or knowledge from large data stores or sets. For analyzing data of manufacturing processes obtained from database using data mining, source data should be collected form production process and transformed to appropriate form. To extract those data from database, a computer program should be made for each database. This paper presents a program to extract easily data form database in industry. The advantage of this program is that user can extract data from all types of database and database table and interface with Teamcenter Manufacturing.

  • PDF

감시 시스템에서의 비정상 소리 탐지 및 식별 (Abnormal Sound Detection and Identification in Surveillance System)

  • 주영민;이의종;김정식;오승근;박대희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.592-595
    • /
    • 2010
  • 본 논문에서는 감시카메라 환경에서 취득한 오디오 데이터를 입력으로 하여, 비정상 상황을 인식하는 시스템을 제안한다. 제안된 시스템은 단일클래스 SVM의 대표적인 모델인 SVDD와 최근 얼굴 인식 분야에서 성공적인 업적을 보여주고 있는 신호 처리 분야의 SRC를 계층적으로 결합한 구조로써, 첫 번째 계층에서는 SVDD로 비정상 소리를 신속하게 탐지하여 관리자에게 알람 경고하고, 두 번째 계층의 SRC는 탐지된 비정상 소리를 유형별로 세분화 식별하여 관리자에게 비상 상황을 보고함으로써 관리자의 위기 상황 대처를 돕는다. 제안된 시스템은 실시간 처리가 가능하며, 점증적 갱신의 학습 능력으로 인하여 비정상 오디오 데이터베이스의 변화에도 능동적으로 적응할 수 있다. 실험을 통하여 제안된 시스템의 성능을 검증한다.

A STUDY ON THE SYSTEM DEVELOPMENT FOR MANAGEMENT OF MINING-RELATED DAMAGES USING GIS

  • Kim, Jung-A;Yoon, Suk-Ho;Kim, Won-Kyun;Choi, Jong-Kuk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.95-97
    • /
    • 2007
  • The mining-related damages due to the mining operations such as ground subsidence, tailing, Acid Mine Drainage, and soil contamination have a significant effect on our social and economical environment. So, for the effective prevention and reclamation works of the hazards in the mining area, the systematic management of mine information and mining-related damages is urgently needed. In this study, we estimated the possibilities of GIS-based system development for the mining area and related database. We classified the steps of building GIS as mine itself, mining-related damages, rehabilitation works and additional functions for estimating damages and analyzed the essential database and functions for each step. GIS will be helpful to estimate the mining-related damages and to carry out the reclamation works effectively.

  • PDF

데이터 마이닝과 퍼지인식도 기반의 인과관계 지식베이스 구축에 관한 연구 (A Study on the Development of Causal Knowledge Base Based on Data Mining and Fuzzy Cognitive Map)

  • Kim, Jin-Sung
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.247-250
    • /
    • 2003
  • Due to the increasing use of very large databases, mining useful information and implicit knowledge from databases is evolving. However, most conventional data mining algorithms identify the relationship among features using binary values (TRUE/FALSE or 0/1) and find simple If-THEN rules at a single concept level. Therefore, implicit knowledge and causal relationships among features are commonly seen in real-world database and applications. In this paper, we thus introduce the mechanism of mining fuzzy association rules and constructing causal knowledge base form database. Acausal knowledge base construction algorithm based on Fuzzy Cognitive Map(FCM) and Srikant and Agrawal's association rule extraction method were proposed for extracting implicit causal knowledge from database. Fuzzy association rules are well suited for the thinking of human subjects and will help to increase the flexibility for supporting users in making decisions or designing the fuzzy systems. It integrates fuzzy set concept and causal knowledge-based data mining technologies to achieve this purpose. The proposed mechanism consists of three phases: First, adaptation of the fuzzy membership function to the database. Second, extraction of the fuzzy association rules using fuzzy input values. Third, building the causal knowledge base. A credit example is presented to illustrate a detailed process for finding the fuzzy association rules from a specified database, demonstration the effectiveness of the proposed algorithm.

  • PDF

Data Mining for Uncertain Data Based on Difference Degree of Concept Lattice

  • Qian Wang;Shi Dong;Hamad Naeem
    • Journal of Information Processing Systems
    • /
    • 제20권3호
    • /
    • pp.317-327
    • /
    • 2024
  • Along with the rapid development of the database technology, as well as the widespread application of the database management systems are more and more large. Now the data mining technology has already been applied in scientific research, financial investment, market marketing, insurance and medical health and so on, and obtains widespread application. We discuss data mining technology and analyze the questions of it. Therefore, the research in a new data mining method has important significance. Some literatures did not consider the differences between attributes, leading to redundancy when constructing concept lattices. The paper proposes a new method of uncertain data mining based on the concept lattice of connotation difference degree (c_diff). The method defines the two rules. The construction of a concept lattice can be accelerated by excluding attributes with poor discriminative power from the process. There is also a new technique of calculating c_diff, which does not scan the full database on each layer, therefore reducing the number of database scans. The experimental outcomes present that the proposed method can save considerable time and improve the accuracy of the data mining compared with U-Apriori algorithm.