• Title/Summary/Keyword: DataMining

Search Result 4,045, Processing Time 0.034 seconds

TFT-LCD 산업에서의 품질마이닝 시스템

  • Lee, Hyeon-U;Nam, Ho-Su;Choe, Gyeong-Ho
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.04a
    • /
    • pp.142-148
    • /
    • 2006
  • Data mining is a useful tool for analyzing data from different perspectives and for summarizing them into useful information. Recently, the data mining methods are applied to solving quality problems of the manufacturing processes. This paper discusses the problems of construction of a quality mining system, which is based on the various data mining methods. The quality mining system includes recipe optimization, significant difference test, finding critical processes, forecasting the yield. The contents and system of this paper are focused on the TFT-LCD manufacturing process. We also provide some illustrative field examples of the quality mining system.

  • PDF

Temporal Data Mining Framework (시간 데이타마이닝 프레임워크)

  • Lee, Jun-Uk;Lee, Yong-Jun;Ryu, Geun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.365-380
    • /
    • 2002
  • Temporal data mining, the incorporation of temporal semantics to existing data mining techniques, refers to a set of techniques for discovering implicit and useful temporal knowledge from large quantities of temporal data. Temporal knowledge, expressible in the form of rules, is knowledge with temporal semantics and relationships, such as cyclic pattern, calendric pattern, trends, etc. There are many examples of temporal data, including patient histories, purchaser histories, and web log that it can discover useful temporal knowledge from. Many studies on data mining have been pursued and some of them have involved issues of temporal data mining for discovering temporal knowledge from temporal data, such as sequential pattern, similar time sequence, cyclic and temporal association rules, etc. However, all of the works treated data in database at best as data series in chronological order and did not consider temporal semantics and temporal relationships containing data. In order to solve this problem, we propose a theoretical framework for temporal data mining. This paper surveys the work to date and explores the issues involved in temporal data mining. We then define a model for temporal data mining and suggest SQL-like mining language with ability to express the task of temporal mining and show architecture of temporal mining system.

Gene Algorithm of Crowd System of Data Mining

  • Park, Jong-Min
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.40-44
    • /
    • 2012
  • Data mining, which is attracting public attention, is a process of drawing out knowledge from a large mass of data. The key technique in data mining is the ability to maximize the similarity in a group and minimize the similarity between groups. Since grouping in data mining deals with a large mass of data, it lessens the amount of time spent with the source data, and grouping techniques that shrink the quantity of the data form to which the algorithm is subjected are actively used. The current grouping algorithm is highly sensitive to static and reacts to local minima. The number of groups has to be stated depending on the initialization value. In this paper we propose a gene algorithm that automatically decides on the number of grouping algorithms. We will try to find the optimal group of the fittest function, and finally apply it to a data mining problem that deals with a large mass of data.

Design and Implementation of a Spatial Data Mining System (공간 데이터 마이닝 시스템의 설계 및 구현)

  • Bae, DUck-Ho;Baek, Ji-Haeng;Oh, Hyun-Kyo;Song, Ju-Won;Kim, Sang-Wook;Choi, Myoung-Hoi;Jo, Hyeon-Ju
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.119-132
    • /
    • 2009
  • Owing to the GIS technology, a vast volume of spatial data has been accumulated, thereby incurring the necessity of spatial data mining techniques. In this paper, we propose a new spatial data mining system named SD-Miner. SD-Miner consists of three parts: a graphical user interface for inputs and outputs, a data mining module that processes spatial mining functionalities, a data storage model that stores and manages spatial as well as non-spatial data by using a DBMS. In particular, the data mining module provides major data mining functionalities such as spatial clustering, spatial classification, spatial characterization, and spatio-temporal association rule mining. SD-Miner has own characteristics: (1) It supports users to perform non-spatial data mining functionalities as well as spatial data mining functionalities intuitively and effectively; (2) It provides users with spatial data mining functions as a form of libraries, thereby making applications conveniently use those functions. (3) It inputs parameters for mining as a form of database tables to increase flexibility. In order to verify the practicality of our SD-Miner developed, we present meaningful results obtained by performing spatial data mining with real-world spatial data.

  • PDF

Design of Manufacturing Data Analysis System using Data Mining Techniques (데이터마이닝 기법을 이용한 생산데이터 분석시스템 설계)

  • Lee H.W.;Lee G.A.;Choi S.;Park H.K.;Bae S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.611-612
    • /
    • 2006
  • Many data mining techniques have been proved useful in revealing important patterns from large data sets. Especially, data mining techniques play an important role in a customer data analysis in a financial industry and an electronic commerce. Also, there are many data mining related research papers in a semiconductor industry and an automotive industry. In addition, data mining techniques are applied to the bioinformatics area. To satisfy customers' various requirements, each industry should develop new processes with more accurate production criteria. Also, they spend more money to guarantee their products' quality. In this manner, we apply data mining techniques to the production-related data such as a test data, a field claim data, and POP (point of production) data in the automotive parts industry. Data collection and transformation techniques should be applied to enhance the analysis results. Also, we classify various types of manufacturing processes and proposed an analysis scheme according to the type of manufacturing process. As a result, we could find inter- or intra-process relationships and critical features to monitor the current status of the each process. Finally, it helps an industry to raise their profit and reduce their failure cost.

  • PDF

A Study on Building Energy Consumption Pattern Analysis Using Data Mining (데이터 마이닝을 이용한 건물 에너지 사용량 패턴 분석에 대한 연구)

  • Jung, Ki-Taek;Yoon, Sung-Min;Moon, Hyeun-Jun;Yeo, Wook-Hyun
    • KIEAE Journal
    • /
    • v.12 no.2
    • /
    • pp.77-82
    • /
    • 2012
  • Data mining is to discover problems in the large amounts of data. Also, data mining trying to find the cause of the problem and the structure. Building energy consumption patterns, the amount of data is infinite. Also, the patterns have a lot of direct and indirect effects. Discussion is needed about the correlation. This work looking for the cause of energy consumption. As a result, energy management can find out the issue. Building energy analysis utilizing data mining techniques to predict energy consumption. And the results are as follows: 1) Using data mining technique, We classified complicated data to several patterns and gained meaningful informations from them. 2) Using cluster analysis, We classified building energy consumption data of residents and analyzed characters of patterns.

Rating and Comments Mining Using TF-IDF and SO-PMI for Improved Priority Ratings

  • Kim, Jinah;Moon, Nammee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5321-5334
    • /
    • 2019
  • Data mining technology is frequently used in identifying the intention of users over a variety of information contexts. Since relevant terms are mainly hidden in text data, it is necessary to extract them. Quantification is required in order to interpret user preference in association with other structured data. This paper proposes rating and comments mining to identify user priority and obtain improved ratings. Structured data (location and rating) and unstructured data (comments) are collected and priority is derived by analyzing statistics and employing TF-IDF. In addition, the improved ratings are generated by applying priority categories based on materialized ratings through Sentiment-Oriented Point-wise Mutual Information (SO-PMI)-based emotion analysis. In this paper, an experiment was carried out by collecting ratings and comments on "place" and by applying them. We confirmed that the proposed mining method is 1.2 times better than the conventional methods that do not reflect priorities and that the performance is improved to almost 2 times when the number to be predicted is small.

Mining Spatio-Temporal Patterns in Trajectory Data

  • Kang, Ju-Young;Yong, Hwan-Seung
    • Journal of Information Processing Systems
    • /
    • v.6 no.4
    • /
    • pp.521-536
    • /
    • 2010
  • Spatio-temporal patterns extracted from historical trajectories of moving objects reveal important knowledge about movement behavior for high quality LBS services. Existing approaches transform trajectories into sequences of location symbols and derive frequent subsequences by applying conventional sequential pattern mining algorithms. However, spatio-temporal correlations may be lost due to the inappropriate approximations of spatial and temporal properties. In this paper, we address the problem of mining spatio-temporal patterns from trajectory data. The inefficient description of temporal information decreases the mining efficiency and the interpretability of the patterns. We provide a formal statement of efficient representation of spatio-temporal movements and propose a new approach to discover spatio-temporal patterns in trajectory data. The proposed method first finds meaningful spatio-temporal regions and extracts frequent spatio-temporal patterns based on a prefix-projection approach from the sequences of these regions. We experimentally analyze that the proposed method improves mining performance and derives more intuitive patterns.

Artificial Intelligence and Pattern Recognition Using Data Mining Algorithms

  • Al-Shamiri, Abdulkawi Yahya Radman
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.221-232
    • /
    • 2021
  • In recent years, with the existence of huge amounts of data stored in huge databases, the need for developing accurate tools for analyzing data and extracting information and knowledge from the huge and multi-source databases have been increased. Hence, new and modern techniques have emerged that will contribute to the development of all other sciences. Knowledge discovery techniques are among these technologies, one popular technique of knowledge discovery techniques is data mining which aims to knowledge discovery from huge amounts of data. Such modern technologies of knowledge discovery will contribute to the development of all other fields. Data mining is important, interesting technique, and has many different and varied algorithms; Therefore, this paper aims to present overview of data mining, and clarify the most important of those algorithms and their uses.

Using Ontologies for Semantic Text Mining (시맨틱 텍스트 마이닝을 위한 온톨로지 활용 방안)

  • Yu, Eun-Ji;Kim, Jung-Chul;Lee, Choon-Youl;Kim, Nam-Gyu
    • The Journal of Information Systems
    • /
    • v.21 no.3
    • /
    • pp.137-161
    • /
    • 2012
  • The increasing interest in big data analysis using various data mining techniques indicates that many commercial data mining tools now need to be equipped with fundamental text analysis modules. The most essential prerequisite for accurate analysis of text documents is an understanding of the exact semantics of each term in a document. The main difficulties in understanding the exact semantics of terms are mainly attributable to homonym and synonym problems, which is a traditional problem in the natural language processing field. Some major text mining tools provide a thesaurus to solve these problems, but a thesaurus cannot be used to resolve complex synonym problems. Furthermore, the use of a thesaurus is irrelevant to the issue of homonym problems and hence cannot solve them. In this paper, we propose a semantic text mining methodology that uses ontologies to improve the quality of text mining results by resolving the semantic ambiguity caused by homonym and synonym problems. We evaluate the practical applicability of the proposed methodology by performing a classification analysis to predict customer churn using real transactional data and Q&A articles from the "S" online shopping mall in Korea. The experiments revealed that the prediction model produced by our proposed semantic text mining method outperformed the model produced by traditional text mining in terms of prediction accuracy such as the response, captured response, and lift.