• Title/Summary/Keyword: Data-driven model

Search Result 680, Processing Time 0.027 seconds

Cyber Kill Chain-Based Taxonomy of Advanced Persistent Threat Actors: Analogy of Tactics, Techniques, and Procedures

  • Bahrami, Pooneh Nikkhah;Dehghantanha, Ali;Dargahi, Tooska;Parizi, Reza M.;Choo, Kim-Kwang Raymond;Javadi, Hamid H.S.
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.865-889
    • /
    • 2019
  • The need for cyber resilience is increasingly important in our technology-dependent society where computing devices and data have been, and will continue to be, the target of cyber-attackers, particularly advanced persistent threat (APT) and nation-state/sponsored actors. APT and nation-state/sponsored actors tend to be more sophisticated, having access to significantly more resources and time to facilitate their attacks, which in most cases are not financially driven (unlike typical cyber-criminals). For example, such threat actors often utilize a broad range of attack vectors, cyber and/or physical, and constantly evolve their attack tactics. Thus, having up-to-date and detailed information of APT's tactics, techniques, and procedures (TTPs) facilitates the design of effective defense strategies as the focus of this paper. Specifically, we posit the importance of taxonomies in categorizing cyber-attacks. Note, however, that existing information about APT attack campaigns is fragmented across practitioner, government (including intelligence/classified), and academic publications, and existing taxonomies generally have a narrow scope (e.g., to a limited number of APT campaigns). Therefore, in this paper, we leverage the Cyber Kill Chain (CKC) model to "decompose" any complex attack and identify the relevant characteristics of such attacks. We then comprehensively analyze more than 40 APT campaigns disclosed before 2018 to build our taxonomy. Such taxonomy can facilitate incident response and cyber threat hunting by aiding in understanding of the potential attacks to organizations as well as which attacks may surface. In addition, the taxonomy can allow national security and intelligence agencies and businesses to share their analysis of ongoing, sensitive APT campaigns without the need to disclose detailed information about the campaigns. It can also notify future security policies and mitigation strategy formulation.

A Study on the Effect of Involuntary Participation in Communication Program Satisfaction on Empathy and Organizational Commitment (비자발적으로 참여하는 소통프로그램만족도가 공감능력과 조직몰입에 미치는 영향에 관한 연구)

  • Shin Soo Haeng
    • Knowledge Management Research
    • /
    • v.24 no.4
    • /
    • pp.43-61
    • /
    • 2023
  • Businesses recognize the importance of empathy among members for achieving organizational goals. Accordingly, they have developed and implemented communication programs aimed at enhancing mutual understanding between the MZ generation and the older generation. However, recent communication programs conducted by businesses differ in that they involve compulsory participation driven by the organization. This study sought to empirically examine their effectiveness. Data was collected from 697 participants in communication programs to validate the proposed research model, which was empirically tested through regression analysis. The results of the analysis confirmed the effectiveness of communication programs even in non-voluntary situations and highlighted intergenerational perception differences. The findings of this study emphasize the significant role of communication and empathy within organizations. Consequently, they have impacted the development of communication strategies and culture within organizations, and are expected to provide theoretical and practical insights valuable to researchers and practitioners interested in intergenerational perception differences from a knowledge management perspective.

Boot storm Reduction through Artificial Intelligence Driven System in Virtual Desktop Infrastructure

  • Heejin Lee;Taeyoung Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.1-9
    • /
    • 2024
  • In this paper, we propose BRAIDS, a boot storm mitigation plan consisting of an AI-based VDI usage prediction system and a virtual machine boot scheduler system, to alleviate boot storms and improve service stability. Virtual Desktop Infrastructure (VDI) is an important technology for improving an organization's work productivity and increasing IT infrastructure efficiency. Boot storms that occur when multiple virtual desktops boot simultaneously cause poor performance and increased latency. Using the xgboost algorithm, existing VDI usage data is used to predict future VDI usage. In addition, it receives the predicted usage as input, defines a boot storm considering the hardware specifications of the VDI server and virtual machine, and provides a schedule to sequentially boot virtual machines to alleviate boot storms. Through the case study, the VDI usage prediction model showed high prediction accuracy and performance improvement, and it was confirmed that the boot storm phenomenon in the virtual desktop environment can be alleviated and IT infrastructure can be utilized efficiently through the virtual machine boot scheduler.

Multi-dimensional Contextual Conditions-driven Mutually Exclusive Learning for Explainable AI in Decision-Making

  • Hyun Jung Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.7-21
    • /
    • 2024
  • There are various machine learning techniques such as Reinforcement Learning, Deep Learning, Neural Network Learning, and so on. In recent, Large Language Models (LLMs) are popularly used for Generative AI based on Reinforcement Learning. It makes decisions with the most optimal rewards through the fine tuning process in a particular situation. Unfortunately, LLMs can not provide any explanation for how they reach the goal because the training is based on learning of black-box AI. Reinforcement Learning as black-box AI is based on graph-evolving structure for deriving enhanced solution through adjustment by human feedback or reinforced data. In this research, for mutually exclusive decision-making, Mutually Exclusive Learning (MEL) is proposed to provide explanations of the chosen goals that are achieved by a decision on both ends with specified conditions. In MEL, decision-making process is based on the tree-based structure that can provide processes of pruning branches that are used as explanations of how to achieve the goals. The goal can be reached by trade-off among mutually exclusive alternatives according to the specific contextual conditions. Therefore, the tree-based structure is adopted to provide feasible solutions with the explanations based on the pruning branches. The sequence of pruning processes can be used to provide the explanations of the inferences and ways to reach the goals, as Explainable AI (XAI). The learning process is based on the pruning branches according to the multi-dimensional contextual conditions. To deep-dive the search, they are composed of time window to determine the temporal perspective, depth of phases for lookahead and decision criteria to prune branches. The goal depends on the policy of the pruning branches, which can be dynamically changed by configured situation with the specific multi-dimensional contextual conditions at a particular moment. The explanation is represented by the chosen episode among the decision alternatives according to configured situations. In this research, MEL adopts the tree-based learning model to provide explanation for the goal derived with specific conditions. Therefore, as an example of mutually exclusive problems, employment process is proposed to demonstrate the decision-making process of how to reach the goal and explanation by the pruning branches. Finally, further study is discussed to verify the effectiveness of MEL with experiments.

A Study on Web-based Technology Valuation System (웹기반 지능형 기술가치평가 시스템에 관한 연구)

  • Sung, Tae-Eung;Jun, Seung-Pyo;Kim, Sang-Gook;Park, Hyun-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.23-46
    • /
    • 2017
  • Although there have been cases of evaluating the value of specific companies or projects which have centralized on developed countries in North America and Europe from the early 2000s, the system and methodology for estimating the economic value of individual technologies or patents has been activated on and on. Of course, there exist several online systems that qualitatively evaluate the technology's grade or the patent rating of the technology to be evaluated, as in 'KTRS' of the KIBO and 'SMART 3.1' of the Korea Invention Promotion Association. However, a web-based technology valuation system, referred to as 'STAR-Value system' that calculates the quantitative values of the subject technology for various purposes such as business feasibility analysis, investment attraction, tax/litigation, etc., has been officially opened and recently spreading. In this study, we introduce the type of methodology and evaluation model, reference information supporting these theories, and how database associated are utilized, focusing various modules and frameworks embedded in STAR-Value system. In particular, there are six valuation methods, including the discounted cash flow method (DCF), which is a representative one based on the income approach that anticipates future economic income to be valued at present, and the relief-from-royalty method, which calculates the present value of royalties' where we consider the contribution of the subject technology towards the business value created as the royalty rate. We look at how models and related support information (technology life, corporate (business) financial information, discount rate, industrial technology factors, etc.) can be used and linked in a intelligent manner. Based on the classification of information such as International Patent Classification (IPC) or Korea Standard Industry Classification (KSIC) for technology to be evaluated, the STAR-Value system automatically returns meta data such as technology cycle time (TCT), sales growth rate and profitability data of similar company or industry sector, weighted average cost of capital (WACC), indices of industrial technology factors, etc., and apply adjustment factors to them, so that the result of technology value calculation has high reliability and objectivity. Furthermore, if the information on the potential market size of the target technology and the market share of the commercialization subject refers to data-driven information, or if the estimated value range of similar technologies by industry sector is provided from the evaluation cases which are already completed and accumulated in database, the STAR-Value is anticipated that it will enable to present highly accurate value range in real time by intelligently linking various support modules. Including the explanation of the various valuation models and relevant primary variables as presented in this paper, the STAR-Value system intends to utilize more systematically and in a data-driven way by supporting the optimal model selection guideline module, intelligent technology value range reasoning module, and similar company selection based market share prediction module, etc. In addition, the research on the development and intelligence of the web-based STAR-Value system is significant in that it widely spread the web-based system that can be used in the validation and application to practices of the theoretical feasibility of the technology valuation field, and it is expected that it could be utilized in various fields of technology commercialization.

Estimation of Monthly Dissolved Inorganic Carbon Inventory in the Southeastern Yellow Sea (황해 남동부 해역의 월별 용존무기탄소 재고 추정)

  • KIM, SO-YUN;LEE, TONGSUP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.4
    • /
    • pp.194-210
    • /
    • 2022
  • The monthly inventory of dissolved inorganic carbon (CT) and its fluxes were simulated using a box-model for the southeastern Yellow Sea, bordering the northern East China Sea. The monthly CT data was constructed by combining the observed data representing four seasons with the data adopted from the recent publications. A 2-box-model of the surface and deep layers was used, assuming that the annual CT inventory was at the steady state and its fluctuations due to the advection in the surface box were negligible. Results of the simulation point out that the monthly CT inventory variation between the surface and deep box was driven primarily by the mixing flux due to the variation of the mixed layer depth, on the scale of -40~35 mol C m-2 month-1. The air to sea CO2 flux was about 2 mol C m-2 yr-1 and was lower than 1/100 of the mixing flux. The biological pump flux estimated magnitude, in the range of 4-5 mol C m-2 yr-1, is about half the in situ measurement value reported. The CT inventory of the water column was maximum in April, when mixing by cooling ceases, and decreases slightly throughout the stratified period. Therefore, the total CT inventory is larger in the stratified period than that of the mixing period. In order to maintain a steady state, 18 mol C m-2 yr-1 (= 216 g C m-2 yr-1), the difference between the maximum and minimum monthly CT inventory, should be transported out to the East China Sea. Extrapolating this flux over the entire southern Yellow Sea boundary yields 4 × 109 g C yr-1. Conceptually this flux is equivalent to the proposed continental shelf pump. Since this flux must go through the vast shelf area of the East China Sea before it joins the open Pacific waters the actual contribution as a continental shelf pump would be significantly lower than reported value. Although errors accompanied the simple box model simulation imposed by the paucity of data and assumptions are considerably large, nevertheless it was possible to constrain the relative contribution among the major fluxes and their range that caused the CT inventory variations, and was able to suggest recommendations for the future studies.

Evaluation of Community Land Model version 3.5-Dynamic Global Vegetation Model over Deciduous Forest in Gwangneung, Korea (광릉 활엽수림에서 Community Land Model 3.5-Dynamic Global Vegetation Model의 평가)

  • Lim, Hee-Jeong;Lee, Young-Hee;Kwon, Hyo-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.95-106
    • /
    • 2010
  • The performance of Community Land Model version 3.5 - Dynamic Global Vegetation Model (CLM-DGVM) was evaluated through a comparison with the observation over temperate deciduous forest in Gwangneung, Korea. Influence of plant phenology, composition of plant functional type, and climate variability on carbon exchanges was also examined through sensitivity test. To get equilibrium carbon storage, the model was run for 400 years driven by the observed atmospheric data at the deciduous forest of the year 2006. We run the model for 2006 with the equilibrium carbon storage at Gwangneung forest and compared the model output with the observation. A comparison of leaf area index (LAI) between the model and observation indicated that the simulated phenology poorly represented the timing of budburst, leaf-fall, and evolution of LAI. Senescence of the phenology was delayed about four weeks and the simulated maximum LAI (of 5.8 $m^2$ $m^{-2}$) was greater than the observed value (of 4.5 $m^2$ $m^{-2}$). The overestimated LAI contributed to overestimation of both gross primary productivity (GPP) and ecosystem respiration $(R_e)$ through increased photosynthesis and foliar autotropic respiration $(R_a)$, respectively. Despite the discrepancy between the simulated and observed LAI, the simulated tree carbon storage amounts were comparable with the reported values at the site. Change in plant phenology from the simulated to the observed reduced more than six weeks of the plant growth period, resulting in the decreased amount of GPP and $R_e$. These values, however, were still higher (~10% of GPP and 40% of $R_e$) than the observed values. The effect of change in plant functional type composition (from dominant temperate deciduous forest to the coexistence of temperate deciduous and needle leaf forests) on the estimated amount of GPP and $R_e$ was marginal. The influence of climate variability on carbon storage amounts was not significant. The simulated inter-annual variation of GPP and $R_e$ from 1994 to 2003 depended on annual mean air temperature and total radiation but not on precipitation. Other deficiencies of CLM3.5-DGVM have been discussed.

A Thermal Time-Driven Dormancy Index as a Complementary Criterion for Grape Vine Freeze Risk Evaluation (포도 동해위험 판정기준으로서 온도시간 기반의 휴면심도 이용)

  • Kwon, Eun-Young;Jung, Jea-Eun;Chung, U-Ran;Lee, Seung-Jong;Song, Gi-Cheol;Choi, Dong-Geun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Regardless of the recent observed warmer winters in Korea, more freeze injuries and associated economic losses are reported in fruit industry than ever before. Existing freeze-frost forecasting systems employ only daily minimum temperature for judging the potential damage on dormant flowering buds but cannot accommodate potential biological responses such as short-term acclimation of plants to severe weather episodes as well as annual variation in climate. We introduce 'dormancy depth', in addition to daily minimum temperature, as a complementary criterion for judging the potential damage of freezing temperatures on dormant flowering buds of grape vines. Dormancy depth can be estimated by a phonology model driven by daily maximum and minimum temperature and is expected to make a reasonable proxy for physiological tolerance of buds to low temperature. Dormancy depth at a selected site was estimated for a climatological normal year by this model, and we found a close similarity in time course change pattern between the estimated dormancy depth and the known cold tolerance of fruit trees. Inter-annual and spatial variation in dormancy depth were identified by this method, showing the feasibility of using dormancy depth as a proxy indicator for tolerance to low temperature during the winter season. The model was applied to 10 vineyards which were recently damaged by a cold spell, and a temperature-dormancy depth-freeze injury relationship was formulated into an exponential-saturation model which can be used for judging freeze risk under a given set of temperature and dormancy depth. Based on this model and the expected lowest temperature with a 10-year recurrence interval, a freeze risk probability map was produced for Hwaseong County, Korea. The results seemed to explain why the vineyards in the warmer part of Hwaseong County have been hit by more freeBe damage than those in the cooler part of the county. A dormancy depth-minimum temperature dual engine freeze warning system was designed for vineyards in major production counties in Korea by combining the site-specific dormancy depth and minimum temperature forecasts with the freeze risk model. In this system, daily accumulation of thermal time since last fall leads to the dormancy state (depth) for today. The regional minimum temperature forecast for tomorrow by the Korea Meteorological Administration is converted to the site specific forecast at a 30m resolution. These data are input to the freeze risk model and the percent damage probability is calculated for each grid cell and mapped for the entire county. Similar approaches may be used to develop freeze warning systems for other deciduous fruit trees.

Using Google Earth for a Dynamic Display of Future Climate Change and Its Potential Impacts in the Korean Peninsula (한반도 기후변화의 시각적 표현을 위한 Google Earth 활용)

  • Yoon, Kyung-Dahm;Chung, U-Ran;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.275-278
    • /
    • 2006
  • Google Earth enables people to easily find information linked to geographical locations. Google Earth consists of a collection of zoomable satellite images laid over a 3-D Earth model and any geographically referenced information can be uploaded to the Web and then downloaded directly into Google Earth. This can be achieved by encoding in Google's open file format, KML (Keyhole Markup Language), where it is visible as a new layer superimposed on the satellite images. We used KML to create and share fine resolution gridded temperature data projected to 3 climatological normal years between 2011-2100 to visualize the site-specific warming and the resultant earlier blooming of spring flowers over the Korean Peninsula. Gridded temperature and phonology data were initially prepared in ArcGIS GRID format and converted to image files (.png), which can be loaded as new layers on Google Earth. We used a high resolution LCD monitor with a 2,560 by 1,600 resolution driven by a dual link DVI card to facilitate visual effects during the demonstration.

Nonlinear Characteristic Analysis of Charging Current for Linear Type Magnetic Flux Pump Using RBFNN (RBF 뉴럴네트워크를 이용한 리니어형 초전도 전원장치의 비선형적 충전전류특성 해석)

  • Chung, Yoon-Do;Park, Ho-Sung;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.140-145
    • /
    • 2010
  • In this work, to theoretically analyze the nonlinear charging characteristic, a Radial Basis Function Neural Network (RBFNN) is adopted. Based on the RBFNN, an charging characteristic tendency of a Linear Type Magnetic Flux Pump (LTMFP) is analyzed. In the paper, we developed the LTMFP that generates stable and controllable charging current and also experimentally investigated its charging characteristic in the cryogenic system. From these experimental results, the charging current of the LTMFP was also found to be frequency dependent with nonlinear quality due to the nonlinear magnetic behaviour of superconducting Nb foil. On the whole, in the case of essentially cryogenic experiment, since cooling costs loomed large in the cryogenic environment, it is difficult to carry out various experiments. Consequentially, in this paper, we estimated the nonlinear characteristic of charging current as well as realized the intelligent model via the design of RBFNN based on the experimental data. In this paper, we view RBF neural networks as predominantly data driven constructs whose processing is based upon an effective usage of experimental data through a prudent process of Fuzzy C-Means clustering method. Also, the receptive fields of the proposed RBF neural network are formed by the FCM clustering.