• Title/Summary/Keyword: Data-driven approach

Search Result 296, Processing Time 0.034 seconds

Compromising Multiple Objectives in Production Scheduling: A Data Mining Approach

  • Hwang, Wook-Yeon;Lee, Jong-Seok
    • Management Science and Financial Engineering
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In multi-objective scheduling problems, the objectives are usually in conflict. To obtain a satisfactory compromise and resolve the issue of NP-hardness, most existing works have suggested employing meta-heuristic methods, such as genetic algorithms. In this research, we propose a novel data-driven approach for generating a single solution that compromises multiple rules pursuing different objectives. The proposed method uses a data mining technique, namely, random forests, in order to extract the logics of several historic schedules and aggregate those. Since it involves learning predictive models, future schedules with the same previous objectives can be easily and quickly obtained by applying new production data into the models. The proposed approach is illustrated with a simulation study, where it appears to successfully produce a new solution showing balanced scheduling performances.

The efficient data-driven solution to nonlinear continuum thermo-mechanics behavior of structural concrete panel reinforced by nanocomposites: Development of building construction in engineering

  • Hengbin Zheng;Wenjun Dai;Zeyu Wang;Adham E. Ragab
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.231-249
    • /
    • 2024
  • When the amplitude of the vibrations is equivalent to that clearance, the vibrations for small amplitudes will really be significantly nonlinear. Nonlinearities will not be significant for amplitudes that are rather modest. Finally, nonlinearities will become crucial once again for big amplitudes. Therefore, the concrete panel system may experience a big amplitude in this work as a result of the high temperature. Based on the 3D modeling of the shell theory, the current work shows the influences of the von Kármán strain-displacement kinematic nonlinearity on the constitutive laws of the structure. The system's governing Equations in the nonlinear form are solved using Kronecker and Hadamard products, the discretization of Equations on the space domain, and Duffing-type Equations. Thermo-elasticity Equations. are used to represent the system's temperature. The harmonic solution technique for the displacement domain and the multiple-scale approach for the time domain are both covered in the section on solution procedures for solving nonlinear Equations. An effective data-driven solution is often utilized to predict how different systems would behave. The number of hidden layers and the learning rate are two hyperparameters for the network that are often chosen manually when required. Additionally, the data-driven method is offered for addressing the nonlinear vibration issue in order to reduce the computing cost of the current study. The conclusions of the present study may be validated by contrasting them with those of data-driven solutions and other published articles. The findings show that certain physical and geometrical characteristics have a significant effect on the existing concrete panel structure's susceptibility to temperature change and GPL weight fraction. For building construction industries, several useful recommendations for improving the thermo-mechanics' behavior of structural concrete panels are presented.

Extraction of Geometric Components of Buildings with Gradients-driven Properties

  • Seo, Su-Young;Kim, Byung-Guk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.1
    • /
    • pp.723-733
    • /
    • 2009
  • This study proposes a sequence of procedures to extract building boundaries and planar patches through segmentation of rasterized lidar data. Although previous approaches to building extraction have been shown satisfactory, there still exist needs to increase the degree of automation. The methodologies proposed in this study are as follows: Firstly, lidar data are rasterized into grid form in order to exploit its rapid access to neighboring elevations and image operations. Secondly, propagation of errors in raw data is taken into account for in assessing the quality of gradients-driven properties and further in choosing suitable parameters. Thirdly, extraction of planar patches is conducted through a sequence of processes: histogram analysis, least squares fitting, and region merging. Experimental results show that the geometric components of building models could be extracted by the proposed approach in a streamlined way.

Self-Evolving Expert Systems based on Fuzzy Neural Network and RDB Inference Engine

  • Kim, Jin-Sung
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.2
    • /
    • pp.19-38
    • /
    • 2003
  • In this research, we propose the mechanism to develop self-evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most researchers had tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, this approach had some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, knowledge engineers had tried to develop an automatic knowledge extraction mechanism. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference engine. Our proposed mechanism has five advantages. First, it can extract and reduce the specific domain knowledge from incomplete database by using data mining technology. Second, our proposed mechanism can manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it can construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems) module. Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy relationships. Fifth, RDB-driven forward and backward inference time is shorter than the traditional text-oriented inference time.

  • PDF

Data Driven Approach to Forecast Water Turnover (데이터 탐색 기법 활용 전도현상 예측모형)

  • Kwon, Sehyug
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.90-96
    • /
    • 2018
  • This paper proposed data driven techniques to forecast the time point of water management of the water reservoir without measuring manganese concentration with the empirical data as Juam Dam of years of 2015 and 2016. When the manganese concentration near the surface of water goes over the criteria of 0.3mg/l, the water management should be taken. But, it is economically inefficient to measure manganese concentration frequently and regularly. The water turnover by the difference of water temperature make manganese on the floor of water reservoir rise up to surface and increase the manganese concentration near the surface. Manganese concentration and water temperature from the surface to depth of 20m by 5m have been time plotted and exploratory analyzed to show that the water turnover could be used instead of measuring manganese concentration to know the time point of water management. Two models for forecasting the time point of water turnover were proposed and compared as follow: The regression model of CR20, the consistency ratio of water temperature, between the surface and the depth of 20m on the lagged variables of CR20 and the first lag variable of max temperature. And, the Box-Jenkins model of CR20 as ARIMA (2, 1, 2).

Effects of Corpus Use on Error Identification in L2 Writing

  • Yoshiho Satake
    • Asia Pacific Journal of Corpus Research
    • /
    • v.4 no.1
    • /
    • pp.61-71
    • /
    • 2023
  • This study examines the effects of data-driven learning (DDL)-an approach employing corpora for inductive language pattern learning-on error identification in second language (L2) writing. The data consists of error identification instances from fifty-five participants, compared across different reference materials: the Corpus of Contemporary American English (COCA), dictionaries, and no use of reference materials. There are three significant findings. First, the use of COCA effectively identified collocational and form-related errors due to inductive inference drawn from multiple example sentences. Secondly, dictionaries were beneficial for identifying lexical errors, where providing meaning information was helpful. Finally, the participants often employed a strategic approach, identifying many simple errors without reference materials. However, while maximizing error identification, this strategy also led to mislabeling correct expressions as errors. The author has concluded that the strategic selection of reference materials can significantly enhance the effectiveness of error identification in L2 writing. The use of a corpus offers advantages such as easy access to target phrases and frequency information-features especially useful given that most errors were collocational and form-related. The findings suggest that teachers should guide learners to effectively use appropriate reference materials to identify errors based on error types.

Data-driven Approach to Explore the Contribution of Process Parameters for Laser Powder Bed Fusion of a Ti-6Al-4V Alloy

  • Jeong Min Park;Jaimyun Jung;Seungyeon Lee;Haeum Park;Yeon Woo Kim;Ji-Hun Yu
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.137-145
    • /
    • 2024
  • In order to predict the process window of laser powder bed fusion (LPBF) for printing metallic components, the calculation of volumetric energy density (VED) has been widely calculated for controlling process parameters. However, because it is assumed that the process parameters contribute equally to heat input, the VED still has limitation for predicting the process window of LPBF-processed materials. In this study, an explainable machine learning (xML) approach was adopted to predict and understand the contribution of each process parameter to defect evolution in Ti alloys in the LPBF process. Various ML models were trained, and the Shapley additive explanation method was adopted to quantify the importance of each process parameter. This study can offer effective guidelines for fine-tuning process parameters to fabricate high-quality products using LPBF.

Design and Implementation of Internet Shopping Mall by Using Virtual Reality-Driven Avatar and Web Decision Support System (가상현실 분신과 웹 의사결정지원 개념에 입각한 인터넷쇼핑몰 설계 및 구현에 관한 연구)

  • 이건창;정남호
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.361-371
    • /
    • 1999
  • This paper is concerned with designing and implementing the Internet shopping mall by using virtual reality-driven avatar and web decision support system. Traditionally, the Internet shopping mall has been designed based on the combination of several hyperlinks, images, and tents. However, this sort of approach results in a lower performance because possible customers cannot make more accurate shopping decisions. To overcome this kind of pitfalls facing the current Internet shopping malls, we propose using a combination of virtual reality and web DSS. The main virtues of our proposed approach to designing the Internet shopping mall are as follows: First, the virtual reality technique is emerging as one of alternatives guaranteeing a sense of reality for customers' part and facilitating the complex process of shopping decision makings. Especially, the avatar, which is an artificially designed man working on the Internet, can make easy and absorbing the Internet shopping-related decision making processes. Second, the web DSS approach can provide an effective decision support mechanism for customers. Especially, we design a set of intelligent agents for the proposed web DSS. Experimental results with an illustrative example showed that our proposed approach can yield a new Internet shopping mall paradigm with which customers can benefit from a high level of decision support functions.

  • PDF

Evaluation of long term shaft resistance of the reused driven pile in clay

  • Cui, Jifei;Rao, Pingping;Wu, Jian;Yang, Zhenkun
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.171-182
    • /
    • 2022
  • Reusing the used pile has not yet been implemented due to the unpredictability of the bearing capacity evolution. This paper presents an analytic approach to estimate the sides shear setup after the dissipation of pore pressure. Long-term evolution of adjacent soil is simulated by viscoelastic-plastic constitutive model. Then, an innovative concept of quasi-overconsolidation is proposed to estimate the strength changes of surrounding soil. Total stress method (α method) is employed to evaluate the long term bearing capacity. Measured data of test piles in Louisiana and semi-logarithmic time function are cited to validate the effectiveness of the presented method. Comparisons illustrate that the presented approach gives a reasonably prediction of the side shear setup. Both the presented method and experiment show the shaft resistance increase by 30%-50%, and this highlight the potential benefit of piles reutilization.

Vibration based bridge scour evaluation: A data-driven method using support vector machines

  • Zhang, Zhiming;Sun, Chao;Li, Changbin;Sun, Mingxuan
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.2
    • /
    • pp.125-145
    • /
    • 2019
  • Bridge scour is one of the predominant causes of bridge failure. Current climate deterioration leads to increase of flooding frequency and severity and thus poses a higher risk of bridge scour failure than before. Recent studies have explored extensively the vibration-based scour monitoring technique by analyzing the structural modal properties before and after damage. However, the state-of-art of this area lacks a systematic approach with sufficient robustness and credibility for practical decision making. This paper attempts to develop a data-driven methodology for bridge scour monitoring using support vector machines. This study extracts features from the bridge dynamic responses based on a generic sensitivity study on the bridge's modal properties and selects the features that are significantly contributive to bridge scour detection. Results indicate that the proposed data-driven method can quantify the bridge scour damage with satisfactory accuracy for most cases. This paper provides an alternative methodology for bridge scour evaluation using the machine learning method. It has the potential to be practically applied for bridge safety assessment in case that scour happens.