In this research, we propose the mechanism to develop self-evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most researchers had tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, this approach had some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, knowledge engineers had tried to develop an automatic knowledge extraction mechanism. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference engine. Our proposed mechanism has five advantages. First, it can extract and reduce the specific domain knowledge from incomplete database by using data mining technology. Second, our proposed mechanism can manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it can construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems) module. Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy relationships. Fifth, RDB-driven forward and backward inference time is shorter than the traditional text-oriented inference time.
We propose a data-driven kinematic control method for a robotic spatial augmented reality (RSAR) system. We assume a scenario where a robotic device and a projector-camera unit (PCU) are assembled in an ad hoc manner with loose kinematic specifications, which hinders the application of a conventional kinematic control method based on the exact link and joint specifications. In the proposed method, the kinematic relation between a PCU and joints is represented as a set of B-spline surfaces based on sample data rather than analytic or differential equations. The sampling process, which automatically records the values of joint angles and the corresponding external parameters of a PCU, is performed as an off-line process when an RSAR system is installed. In an on-line process, an external parameter of a PCU at a certain joint configuration, which is directly readable from motors, can be computed by evaluating the pre-built B-spline surfaces. We provide details of the proposed method and validate the model through a comparison with an analytic RSAR model with synthetic noises to simulate assembly errors.
This paper proposed data driven techniques to forecast the time point of water management of the water reservoir without measuring manganese concentration with the empirical data as Juam Dam of years of 2015 and 2016. When the manganese concentration near the surface of water goes over the criteria of 0.3mg/l, the water management should be taken. But, it is economically inefficient to measure manganese concentration frequently and regularly. The water turnover by the difference of water temperature make manganese on the floor of water reservoir rise up to surface and increase the manganese concentration near the surface. Manganese concentration and water temperature from the surface to depth of 20m by 5m have been time plotted and exploratory analyzed to show that the water turnover could be used instead of measuring manganese concentration to know the time point of water management. Two models for forecasting the time point of water turnover were proposed and compared as follow: The regression model of CR20, the consistency ratio of water temperature, between the surface and the depth of 20m on the lagged variables of CR20 and the first lag variable of max temperature. And, the Box-Jenkins model of CR20 as ARIMA (2, 1, 2).
In this paper we illustrate the design of a node label data flow machine based on self-timed paradigm. Data flow machines differ from most other parallel architectures, they are based on the concept of the data-driven computation model instead of the program store computation model. Since the data-driven computation model provides the excution of instructions asynchronously, it is natural to implement a data flow machine using self timed circuits.
본 논문은 최근 세계적인 데이터 개방·공유 정책에 따라 국가R&D 데이터 기반 경영을 위한 효율적인 국가R&D API(Application Programming Interface) 관리시스템 구축과 운영 데이터 활용 가능성 탐색을 목적으로 한다. 국가R&D 데이터 개방·공유 추세에 따라 국가R&D API 서비스의 운영 데이터 분석을 통해 경영효율화 방안을 마련한다. 이를 위해 기존에 개별적으로 배포하던 국가R&D API에 대해 파라미터를 표준화하고 개별 API들을 통합하여 국가R&통합API 관리시스템을 구축한다. 국가R&D API의 서비스 호출 트래픽을 보면 측정을 시작한 2015년 대비 2019년까지 554.5%의 큰 성장세를 이루고 있다. 이에 따라 본 논문은 국가R&D통합API 관리시스템의 실제 운영에 있어서 서비스 운영관리 데이터 기반의 데이터 준비, 분석, 예측을 통해 운영 데이터 활용 가능성을 탐색한다.
모바일 기기의 확산과 ICT 기술로 핀테크 혁신이 더욱 가속화 될 것으로 전망되는 가운데, 최근 금융의 화두는 '디지털 전환'이며, 여기에는 빅데이터의 활용이 주요 요소라 할 수 있다. 특히 오픈 뱅킹이라는 인프라가 마이데이터와 마이페이먼트 산업과 연계되어 금융정보의 이종결합, 자산 조회 및 이체 기능이 결합되는 오픈 파이낸스 시대가 도래고 있다. 마이데이터는 데이터 활용을 통한 가치 창출에 주목하여 나타난 개념으로, 데이터의 주체가 능동적인 자기결정권을 갖는데 의의가 있는데 현재 국내에서도 마이데이터가 시행 되며 전략적 활용방안을 모색되고 있다. 이에 본 연구는 마이데이터 관련 비즈니스 사례를 분석하여 향후 금융의 디지털 전환을 위한 전략적 활용방안을 제시하는 것을 목적으로 하였다. 해외 주요국가에서 마이데이터 개념을 적용한 PSD2 및 오픈뱅킹 정책을 적극 추진하고 있는 가운데 성공적인 비즈니스 모델(Mint, Information Bank, Strands)의 분석을 통해 데이터 기반 비즈니스의 타당성을 확인하고 공통점을 모색하기 위한 사례 연구를 수행하였다. 거래의 효율성과 다양성을 향상시키는 사업 모델을 제공한다는 관점에서 마이데이터는 기존의 사업 모델을 개선할 수 있는 잠재력이 있음을 확인할 수 있었다. 마이데이터는 본인 중심의 모든 데이터로부터 개별적인 데이터 생태계를 쉽게 구현하고 관리할 수 있어야 하는데 개인이 스스로 이를 관리, 통제, 활용하는 것은 현실적으로 어렵다. 따라서 마이데이터 오퍼레이터 또는 마이데이터 서비스 제공자 역할을 할 수 있는 비즈니스 모델이 적극적으로 모색될 필요가 있겠다.
Data-driven model for estimating fuel oil consumption in seaways is suggested using the model test results and operation data. The data-driven model requires the forecasted wind speed, direction, and the desired ship speed as inputs to predict the engine speed, power, and fuel oil consumption. The structure of the data-driven model is based on the deterministic model of added power of a similar vessel of which model test results in the calm water and head seas are accessible. For a given wind speed, the wind resistance and added resistance in irregular waves presented by Pierson-Moskowitz spectrum are computed to be applied to the propulsion performance prediction. The deterministic model takes a cubic approximation between the wind speed and engine speed. The model is tuned by actual operation data in seaways with various wind direction groups. The shaft power and fuel oil consumption estimation are added to the model to be validated with the operation data. The prediction model is validated with the operation data to confirm that the estimation of the engine speed is the most significant uncertainty source.
Recently, we have witnessed a host of emerging tools in the management support systems (MSS) area including the data warehouse/multidimensinal databases (MDDB), data mining, on-line analytical processing (OLAP), intelligent agents, World Wide Web(WWW) technologies, the Internet, and corporate intranets. These tools are reshaping MSS developments in organizations. This article reviews a set of emerging data management technologies in the knowledge discovery in databases(KDD) process and analyzes their implications for decision support. Furthermore, today's MSS are equipped with a plethora of AI techniques (artifical neural networks, and genetic algorithms, etc) fuzzy sets, modeling by example , geographical information system(GIS), logic modeling, and visual interactive modeling (VIM) , All these developments suggest that we are shifting the corporate decision making paradigm form information-driven decision making in the1980s to knowledge-driven decision making in the 1990s.
많은 양의 연속적인 스트림 데이터를 대상으로 하는 연속적인 질의처리의 경우는 전통적 방식의 요구구동형 질의처리 방식이 적합하지 않다. 본 논문에서는 자료구동형 방식을 도입하여 질의를 처리함으로써 스트림 데이터에 알맞은 질의처리 기법을 제안하고 질의계획의 구조와 질의실행 방식을 설명하였다. 제안된 질의처리 기법은 다중질의 처리가 가능하며, 질의 간에 공유가 가능하게 한다. 또한 부분질의의 실행결과가 저장됨으로써 실행시간을 단축할 수 있다. 본 질의처리 모델에 XML 데이터와 XQuery 질의를 적용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.