• Title/Summary/Keyword: Data-based analysis

Search Result 30,989, Processing Time 0.056 seconds

Application of Crime Prevention Design based on Public Data Analysis: Focusing on Seoul (공공데이터분석 기반 범죄예방환경설계 적용 : 서울시 중심으로)

  • Kim, Sung-Jun
    • Korean Security Journal
    • /
    • no.60
    • /
    • pp.91-111
    • /
    • 2019
  • Violent crimes have increased continuously due to the development of urban society and have become a threatening factor against the residential safety of citizens. The prevention of these crimes is always a major topic in human society and one of the fundamental elements of the quality of life and safety of citizens. In recent years, much attention has been paid to environmental design through the Crime Prevention Through Environmental Design (CPTED) as a preventive measure. Currently, South Korea is promoting the openness and utilization of public data, and crime prevention is one of the fields that can utilize public data actively. This approach to crime prevention utilizing public data will be helpful for the proposal of policies from new viewpoints departing from the general utilization measures of CPTED that improve streetlights and closed-circuit television (CCTV) installations, whose limitations have been pointed out as they are only mechanical surveillance. Thus, this study sets the research scope based on the statistics of the status of five criminal offenses by administrative district in recent years provided by the data portal in Seoul City, the capital of South Korea, as the utilization data and concentrates on the analysis. Based on the analysis results, this study proposes a method to utilize classical music as a new policy for regions where the improvements are most needed. The open-source Python analysis program was employed as the main data analysis and visualization method.

Statistical analysis of KNHANES data with measurement error models

  • Hwang, Jinseub
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.773-779
    • /
    • 2015
  • We study a statistical analysis about the fifth wave data of the Korea National Health and Nutrition Examination Survey based on linear regression models with measurement errors. The data is obtained from a national population-based complex survey. To demonstrate the availability of measurement error models, two results between the general linear regression model and measurement error model are compared based on the model selection criteria which are Akaike information criterion and Bayesian information criterion. For our study, we use the simulation extrapolation algorithm for measurement error model and the jackknife method for the estimation of standard errors.

Meta Learning based Object Tracking Technology: A Survey

  • Ji-Won Baek;Kyungyong Chung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2067-2081
    • /
    • 2024
  • Recently, image analysis research has been actively conducted due to the accumulation of big image data and the development of deep learning. Image analytics research has different characteristics from other data such as data size, real-time, image quality diversity, structural complexity, and security issues. In addition, a large amount of data is required to effectively analyze images with deep-learning models. However, in many fields, the data that can be collected is limited, so there is a need for meta learning based image analysis technology that can effectively train models with a small amount of data. This paper presents a comprehensive survey of meta-learning-based object-tracking techniques. This approach comprehensively explores object tracking methods and research that can achieve high performance in data-limited situations, including key challenges and future directions. It provides useful information for researchers in the field and can provide insights into future research directions.

Study on Correlation-based Feature Selection in an Automatic Quality Inspection System using Support Vector Machine (SVM) (SVM 기반 자동 품질검사 시스템에서 상관분석 기반 데이터 선정 연구)

  • Song, Donghwan;Oh, Yeong Gwang;Kim, Namhun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.6
    • /
    • pp.370-376
    • /
    • 2016
  • Manufacturing data analysis and its applications are getting a huge popularity in various industries. In spite of the fast advancement in the big data analysis technology, however, the manufacturing quality data monitored from the automated inspection system sometimes is not reliable enough due to the complex patterns of product quality. In this study, thus, we aim to define the level of trusty of an automated quality inspection system and improve the reliability of the quality inspection data. By correlation analysis and feature selection, this paper presents a method of improving the inspection accuracy and efficiency in an SVM-based automatic product quality inspection system using thermal image data in an auto part manufacturing case. The proposed method is implemented in the sealer dispensing process of the automobile manufacturing and verified by the analysis of the optimal feature selection from the quality analysis results.

An Analysis of Fuzzy Survey Data Based on the Maximum Entropy Principle (최대 엔트로피 분포를 이용한 퍼지 관측데이터의 분석법에 관한 연구)

  • 유재휘;유동일
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.2
    • /
    • pp.131-138
    • /
    • 1998
  • In usual statistical data analysis, we describe statistical data by exact values. However, in modem complex and large-scale systems, it is difficult to treat the systems using only exact data. In this paper, we define these data as fuzzy data(ie. Linguistic variable applied to make the member-ship function.) and Propose a new method to get an analysis of fuzzy survey data based on the maximum entropy Principle. Also, we propose a new method of discrimination by measuring distance between a distribution of the stable state and estimated distribution of the present state using the Kullback - Leibler information. Furthermore, we investigate the validity of our method by computer simulations under realistic situations.

  • PDF

Service Level Evaluation Through Measurement Indicators for Public Open Data (공공데이터 개방 평가지표 개발을 통한 현황분석 및 가시화)

  • Kim, Ji-Hye;Cho, Sang-Woo;Lee, Kyung-hee;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.1 no.1
    • /
    • pp.53-60
    • /
    • 2016
  • Data of central government and local government was collected automatically from the public data portal. And we did the multidimensional analysis based on various perspective like file format and present condition of public data. To complete this work, we constructed Data Warehouse based on the other countries' evaluation index case. Finally, the result from service level evaluation by using multidimensional analysis was used to display each area, establishment, fields.

  • PDF

Clustering Algorithm by Grid-based Sampling

  • Park, Hee-Chang;Ryu, Jee-Hyun;Lee, Sung-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.535-543
    • /
    • 2003
  • Cluster analysis has been widely used in many applications, such as pattern analysis or recognition, data analysis, image processing, market research on on-line or off-line and so on. Clustering can identify dense and sparse regions among data attributes or object attributes. But it requires many hours to get clusters that we want, because clustering is more primitive, explorative and we make many data an object of cluster analysis. In this paper we propose a new method of clustering using sample based on grid. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

Offline-to-Online Service and Big Data Analysis for End-to-end Freight Management System

  • Selvaraj, Suganya;Kim, Hanjun;Choi, Eunmi
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.377-393
    • /
    • 2020
  • Freight management systems require a new business model for rapid decision making to improve their business processes by dynamically analyzing the previous experience data. Moreover, the amount of data generated by daily business activities to be analyzed for making better decisions is enormous. Online-to-offline or offline-to-online (O2O) is an electronic commerce (e-commerce) model used to combine the online and physical services. Data analysis is usually performed offline. In the present paper, to extend its benefits to online and to efficiently apply the big data analysis to the freight management system, we suggested a system architecture based on O2O services. We analyzed and extracted the useful knowledge from the real-time freight data for the period 2014-2017 aiming at further business development. The proposed system was deemed useful for truck management companies as it allowed dynamically obtaining the big data analysis results based on O2O services, which were used to optimize logistic freight, improve customer services, predict customer expectation, reduce costs and overhead by improving profit margins, and perform load balancing.

Inappropriate Survey Design Analysis of the Korean National Health and Nutrition Examination Survey May Produce Biased Results

  • Kim, Yangho;Park, Sunmin;Kim, Nam-Soo;Lee, Byung-Kook
    • Journal of Preventive Medicine and Public Health
    • /
    • v.46 no.2
    • /
    • pp.96-104
    • /
    • 2013
  • Objectives: The inherent nature of the Korean National Health and Nutrition Examination Survey (KNHANES) design requires special analysis by incorporating sample weights, stratification, and clustering not used in ordinary statistical procedures. Methods: This study investigated the proportion of research papers that have used an appropriate statistical methodology out of the research papers analyzing the KNHANES cited in the PubMed online system from 2007 to 2012. We also compared differences in mean and regression estimates between the ordinary statistical data analyses without sampling weight and design-based data analyses using the KNHANES 2008 to 2010. Results: Of the 247 research articles cited in PubMed, only 19.8% of all articles used survey design analysis, compared with 80.2% of articles that used ordinary statistical analysis, treating KNHANES data as if it were collected using a simple random sampling method. Means and standard errors differed between the ordinary statistical data analyses and design-based analyses, and the standard errors in the design-based analyses tended to be larger than those in the ordinary statistical data analyses. Conclusions: Ignoring complex survey design can result in biased estimates and overstated significance levels. Sample weights, stratification, and clustering of the design must be incorporated into analyses to ensure the development of appropriate estimates and standard errors of these estimates.

Research on the Development of Big Data Analysis Tools for Engineering Education (공학교육 빅 데이터 분석 도구 개발 연구)

  • Kim, Younyoung;Kim, Jaehee
    • Journal of Engineering Education Research
    • /
    • v.26 no.4
    • /
    • pp.22-35
    • /
    • 2023
  • As information and communication technology has developed remarkably, it has become possible to analyze various types of large-volume data generated at a speed close to real time, and based on this, reliable value creation has become possible. Such big data analysis is becoming an important means of supporting decision-making based on scientific figures. The purpose of this study is to develop a big data analysis tool that can analyze large amounts of data generated through engineering education. The tasks of this study are as follows. First, a database is designed to store the information of entries in the National Creative Capstone Design Contest. Second, the pre-processing process is checked for analysis with big data analysis tools. Finally, analyze the data using the developed big data analysis tool. In this study, 1,784 works submitted to the National Creative Comprehensive Design Contest from 2014 to 2019 were analyzed. As a result of selecting the top 10 words through topic analysis, 'robot' ranked first from 2014 to 2019, and energy, drones, ultrasound, solar energy, and IoT appeared with high frequency. This result seems to reflect the current core topics and technology trends of the 4th Industrial Revolution. In addition, it seems that due to the nature of the Capstone Design Contest, students majoring in electrical/electronic, computer/information and communication engineering, mechanical engineering, and chemical/new materials engineering who can submit complete products for problem solving were selected. The significance of this study is that the results of this study can be used in the field of engineering education as basic data for the development of educational contents and teaching methods that reflect industry and technology trends. Furthermore, it is expected that the results of big data analysis related to engineering education can be used as a means of preparing preemptive countermeasures in establishing education policies that reflect social changes.