• Title/Summary/Keyword: Data-Driven Approach

Search Result 312, Processing Time 0.022 seconds

Prediction of the remaining time and time interval of pebbles in pebble bed HTGRs aided by CNN via DEM datasets

  • Mengqi Wu;Xu Liu;Nan Gui;Xingtuan Yang;Jiyuan Tu;Shengyao Jiang;Qian Zhao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.339-352
    • /
    • 2023
  • Prediction of the time-related traits of pebble flow inside pebble-bed HTGRs is of great significance for reactor operation and design. In this work, an image-driven approach with the aid of a convolutional neural network (CNN) is proposed to predict the remaining time of initially loaded pebbles and the time interval of paired flow images of the pebble bed. Two types of strategies are put forward: one is adding FC layers to the classic classification CNN models and using regression training, and the other is CNN-based deep expectation (DEX) by regarding the time prediction as a deep classification task followed by softmax expected value refinements. The current dataset is obtained from the discrete element method (DEM) simulations. Results show that the CNN-aided models generally make satisfactory predictions on the remaining time with the determination coefficient larger than 0.99. Among these models, the VGG19+DEX performs the best and its CumScore (proportion of test set with prediction error within 0.5s) can reach 0.939. Besides, the remaining time of additional test sets and new cases can also be well predicted, indicating good generalization ability of the model. In the task of predicting the time interval of image pairs, the VGG19+DEX model has also generated satisfactory results. Particularly, the trained model, with promising generalization ability, has demonstrated great potential in accurately and instantaneously predicting the traits of interest, without the need for additional computational intensive DEM simulations. Nevertheless, the issues of data diversity and model optimization need to be improved to achieve the full potential of the CNN-aided prediction tool.

Analyzing the Co-occurrence of Endangered Brackish-Water Snails with Other Species in Ecosystems Using Association Rule Learning and Clustering Analysis (연관 규칙 학습과 군집분석을 활용한 멸종위기 기수갈고둥과 생태계 내 종 간 연관성 분석)

  • Sung-Ho Lim;Yuno Do
    • Korean Journal of Ecology and Environment
    • /
    • v.57 no.2
    • /
    • pp.83-91
    • /
    • 2024
  • This study utilizes association rule learning and clustering analysis to explore the co-occurrence and relationships within ecosystems, focusing on the endangered brackish-water snail Clithon retropictum, classified as Class II endangered wildlife in Korea. The goal is to analyze co-occurrence patterns between brackish-water snails and other species to better understand their roles within the ecosystem. By examining co-occurrence patterns and relationships among species in large datasets, association rule learning aids in identifying significant relationships. Meanwhile, K-means and hierarchical clustering analyses are employed to assess ecological similarities and differences among species, facilitating their classification based on ecological characteristics. The findings reveal a significant level of relationship and co-occurrence between brackish-water snails and other species. This research underscores the importance of understanding these relationships for the conservation of endangered species like C. retropictum and for developing effective ecosystem management strategies. By emphasizing the role of a data-driven approach, this study contributes to advancing our knowledge on biodiversity conservation and ecosystem health, proposing new directions for future research in ecosystem management and conservation strategies.

Federated learning-based client training acceleration method for personalized digital twins (개인화 디지털 트윈을 위한 연합학습 기반 클라이언트 훈련 가속 방식)

  • YoungHwan Jeong;Won-gi Choi;Hyoseon Kye;JeeHyeong Kim;Min-hwan Song;Sang-shin Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.23-37
    • /
    • 2024
  • Digital twin is an M&S (Modeling and Simulation) technology designed to solve or optimize problems in the real world by replicating physical objects in the real world as virtual objects in the digital world and predicting phenomena that may occur in the future through simulation. Digital twins have been elaborately designed and utilized based on data collected to achieve specific purposes in large-scale environments such as cities and industrial facilities. In order to apply this digital twin technology to real life and expand it into user-customized service technology, practical but sensitive issues such as personal information protection and personalization of simulations must be resolved. To solve this problem, this paper proposes a federated learning-based accelerated client training method (FACTS) for personalized digital twins. The basic approach is to use a cluster-driven federated learning training procedure to protect personal information while simultaneously selecting a training model similar to the user and training it adaptively. As a result of experiments under various statistically heterogeneous conditions, FACTS was found to be superior to the existing FL method in terms of training speed and resource efficiency.

Designing an Intelligent Advertising Business Model in Seoul's Metro Network (서울지하철의 지능형 광고 비즈니스모델 설계)

  • Musyoka, Kavoya Job;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.1-31
    • /
    • 2017
  • Modern businesses are adopting new technologies to serve their markets better as well as to improve efficiency and productivity. The advertising industry has continuously experienced disruptions from the traditional channels (radio, television and print media) to new complex ones including internet, social media and mobile-based advertising. This case study focuses on proposing intelligent advertising business model in Seoul's metro network. Seoul has one of the world's busiest metro network and transports a huge number of travelers on a daily basis. The high number of travelers coupled with a well-planned metro network creates a platform where marketers can initiate engagement and interact with both customers and potential customers. In the current advertising model, advertising is on illuminated and framed posters in the stations and in-car, non-illuminated posters, and digital screens that show scheduled arrivals and departures of metros. Some stations have digital screens that show adverts but they do not have location capability. Most of the current advertising media have one key limitation: space. For posters whether illuminated or not, one space can host only one advert at a time. Empirical literatures show that there is room for improving this advertising model and eliminate the space limitation by replacing the poster adverts with digital advertising platform. This new model will not only be digital, but will also provide intelligent advertising platform that is driven by data. The digital platform will incorporate location sensing, e-commerce, and mobile platform to create new value to all stakeholders. Travel cards used in the metro will be registered and the card scanners will have a capability to capture traveler's data when travelers tap their cards. This data once analyzed will make it possible to identify different customer groups. Advertisers and marketers will then be able to target specific customer groups, customize adverts based on the targeted consumer group, and offer a wide variety of advertising formats. Format includes video, cinemagraphs, moving pictures, and animation. Different advert formats create different emotions in the customer's mind and the goal should be to use format or combination of formats that arouse the expected emotion and lead to an engagement. Combination of different formats will be more effective and this can only work in a digital platform. Adverts will be location based, ensuring that adverts will show more frequently when the metro is near the premises of an advertiser. The advertising platform will automatically detect the next station and screens inside the metro will prioritize adverts in the station where the metro will be stopping. In the mobile platform, customers who opt to receive notifications will receive them when they approach the business premises of advertiser. The mobile platform will have indoor navigation for the underground shopping malls that will allow customers to search for facilities within the mall, products they may want to buy as well as deals going on in the underground mall. To create an end-to-end solution, the mobile solution will have a capability to allow customers purchase products through their phones, get coupons for deals, and review products and shops where they have bought a product. The indoor navigation will host intelligent mobile-based advertisement and a recommendation system. The indoor navigation will have adverts such that when a customer is searching for information, the recommendation system shows adverts that are near the place traveler is searching or in the direction that the traveler is moving. These adverts will be linked to the e-commerce platform such that if a customer clicks on an advert, it leads them to the product description page. The whole system will have multi-language as well as text-to-speech capability such that both locals and tourists have no language barrier. The implications of implementing this model are varied including support for small and medium businesses operating in the underground malls, improved customer experience, new job opportunities, additional revenue to business model operator, and flexibility in advertising. The new value created will benefit all the stakeholders.

Minimizing Estimation Errors of a Wind Velocity Forecasting Technique That Functions as an Early Warning System in the Agricultural Sector (농업기상재해 조기경보시스템의 풍속 예측 기법 개선 연구)

  • Kim, Soo-ock;Park, Joo-Hyeon;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.63-77
    • /
    • 2022
  • Our aim was to reduce estimation errors of a wind velocity model used as an early warning system for weather risk management in the agricultural sector. The Rural Development Administration (RDA) agricultural weather observation network's wind velocity data and its corresponding estimated data from January to December 2020 were used to calculate linear regression equations (Y = aX + b). In each linear regression, the wind estimation error at 87 points and eight time slots per day (00:00, 03:00, 06:00, 09.00, 12.00, 15.00, 18.00, and 21:00) is the dependent variable (Y), while the estimated wind velocity is the independent variable (X). When the correlation coefficient exceeded 0.5, the regression equation was used as the wind velocity correction equation. In contrast, when the correlation coefficient was less than 0.5, the mean error (ME) at the corresponding points and time slots was substituted as the correction value instead of the regression equation. To enable the use of wind velocity model at a national scale, a distribution map with a grid resolution of 250 m was created. This objective was achieved b y performing a spatial interpolation with an inverse distance weighted (IDW) technique using the regression coefficients (a and b), the correlation coefficient (R), and the ME values for the 87 points and eight time slots. Interpolated grid values for 13 weather observation points in rural areas were then extracted. The wind velocity estimation errors for 13 points from January to December 2019 were corrected and compared with the system's values. After correction, the mean ME of the wind velocities reduced from 0.68 m/s to 0.45 m/s, while the mean RMSE reduced from 1.30 m/s to 1.05 m/s. In conclusion, the system's wind velocities were overestimated across all time slots; however, after the correction model was applied, the overestimation reduced in all time slots, except for 15:00. The ME and RMSE improved b y 33% and 19.2%, respectively. In our system, the warning for wind damage risk to crops is driven by the daily maximum wind speed derived from the daily mean wind speed obtained eight times per day. This approach is expected to reduce false alarms within the context of strong wind risk, by reducing the overestimation of wind velocities.

A Correlation Analysis between International Oil Price Fluctuations and Overseas Construction Order Volumes using Statistical Data (통계 데이터를 활용한 국제 유가와 해외건설 수주액의 상관성 분석)

  • Park, Hwan-Pyo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.273-284
    • /
    • 2024
  • This study investigates the impact of international oil price fluctuations on overseas construction orders secured by domestic and foreign companies. The analysis employs statistical data spanning the past 20 years, encompassing international oil prices, overseas construction orders from domestic firms, and new overseas construction orders from the top 250 global construction companies. The correlation between these variables is assessed using correlation coefficients(R), determination coefficients(R2), and p-values. The results indicate a strong positive correlation between international oil prices and overseas construction orders. The correlation coefficient between domestic overseas construction orders and oil prices is found to be 0.8 or higher, signifying a significant influence. Similarly, a high correlation coefficient of 0.76 is observed between oil prices and new orders from leading global construction companies. Further analysis reveals a particularly strong correlation between oil prices and overseas construction orders in Asia and the Middle East, potentially due to the prevalence of oil-related projects in these regions. Additionally, a high correlation is observed between oil prices and orders for industrial facilities compared to architectural projects. This suggests an increase in plant construction volumes driven by fluctuations in oil prices. Based on these findings, the study proposes an entry strategy for navigating oil price volatility and maintaining competitiveness in the overseas construction market. Key recommendations include diversifying project locations and supplier bases; utilizing hedging techniques for exchange rate risk management, adapting to local infrastructure and market conditions, establishing local partnerships and securing skilled local labor, implementing technological innovations and digitization at construction sites to enhance productivity and cost reduction The insights gained from this study, coupled with the proposed overseas expansion strategies, offer valuable guidance for mitigating risks in the global construction market and fostering resilience in response to international oil price fluctuations. This approach is expected to strengthen the competitiveness of domestic and foreign construction firms seeking success in the international arena.

Stock Price Prediction by Utilizing Category Neutral Terms: Text Mining Approach (카테고리 중립 단어 활용을 통한 주가 예측 방안: 텍스트 마이닝 활용)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.123-138
    • /
    • 2017
  • Since the stock market is driven by the expectation of traders, studies have been conducted to predict stock price movements through analysis of various sources of text data. In order to predict stock price movements, research has been conducted not only on the relationship between text data and fluctuations in stock prices, but also on the trading stocks based on news articles and social media responses. Studies that predict the movements of stock prices have also applied classification algorithms with constructing term-document matrix in the same way as other text mining approaches. Because the document contains a lot of words, it is better to select words that contribute more for building a term-document matrix. Based on the frequency of words, words that show too little frequency or importance are removed. It also selects words according to their contribution by measuring the degree to which a word contributes to correctly classifying a document. The basic idea of constructing a term-document matrix was to collect all the documents to be analyzed and to select and use the words that have an influence on the classification. In this study, we analyze the documents for each individual item and select the words that are irrelevant for all categories as neutral words. We extract the words around the selected neutral word and use it to generate the term-document matrix. The neutral word itself starts with the idea that the stock movement is less related to the existence of the neutral words, and that the surrounding words of the neutral word are more likely to affect the stock price movements. And apply it to the algorithm that classifies the stock price fluctuations with the generated term-document matrix. In this study, we firstly removed stop words and selected neutral words for each stock. And we used a method to exclude words that are included in news articles for other stocks among the selected words. Through the online news portal, we collected four months of news articles on the top 10 market cap stocks. We split the news articles into 3 month news data as training data and apply the remaining one month news articles to the model to predict the stock price movements of the next day. We used SVM, Boosting and Random Forest for building models and predicting the movements of stock prices. The stock market opened for four months (2016/02/01 ~ 2016/05/31) for a total of 80 days, using the initial 60 days as a training set and the remaining 20 days as a test set. The proposed word - based algorithm in this study showed better classification performance than the word selection method based on sparsity. This study predicted stock price volatility by collecting and analyzing news articles of the top 10 stocks in market cap. We used the term - document matrix based classification model to estimate the stock price fluctuations and compared the performance of the existing sparse - based word extraction method and the suggested method of removing words from the term - document matrix. The suggested method differs from the word extraction method in that it uses not only the news articles for the corresponding stock but also other news items to determine the words to extract. In other words, it removed not only the words that appeared in all the increase and decrease but also the words that appeared common in the news for other stocks. When the prediction accuracy was compared, the suggested method showed higher accuracy. The limitation of this study is that the stock price prediction was set up to classify the rise and fall, and the experiment was conducted only for the top ten stocks. The 10 stocks used in the experiment do not represent the entire stock market. In addition, it is difficult to show the investment performance because stock price fluctuation and profit rate may be different. Therefore, it is necessary to study the research using more stocks and the yield prediction through trading simulation.

Aesthetic Experience of Streetscape in Syarosu-gil as Urban Commercial Alleyway (도심 골목상권으로서 샤로수길 가로 경관의 미적 경험)

  • Lim, Hansol;Pae, Jeong-Hann
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.125-137
    • /
    • 2021
  • How can we explain the phenomenon of small, old alleyways in the city becoming rising commercial places attracting people from an aesthetic perspective? This research discusses distinctive aesthetic experiences of urban commercial alleyways, which are located on inner roads and consist of small-scale stores and explore the specific aspects of Sharosu-gil, located in Gwanak-gu, Seoul. The aesthetic experience of urban commercial alleyways is generated by the contrast with the refined urban fabric along main roads in terms of space, the gap between the old and the new, and the antagonism between the known and the less known. The approach to Sharosu-gil consists of the high-rise buildings along the main road built in the 2000s, then encountering low-rise buildings on inside roads built from the late 1970s to the present. Therefore, it is judged that the site has sufficient conditions to generate the aesthetic experience as an urban commercial alleyway. As a result of analyzing the street improvement projects, first, the official announcement of the name 'Sharosu-gil' was interpreted as an escape from the place specificity and garnered the acquisition of the characteristics of an alternative. Secondly, the improvement project for old-established signboards was interpreted as harmony between the new and the old and the loss of temporality. Thirdly, in the pedestrian priority road project, the pavement was interpreted as a reinforcement of the identity as an alleyway and the visualization of the area. Since the reality of urban commercial alleyways depends on the user's visiting, it is necessary to interpret alleyways from the perspective of the senses and aesthetics, not just from social phenomena or capital logic perspective. The study will cast implications for relevant schemes and data-driven research.

Climate-Smart Agriculture (CSA)-Based Assessment of a Rice Cultivation System in Gimje, Korea (한국 김제의 벼 경작 시스템의 기후스마트농업 (Climate-Smart Agriculture) 기반의 평가)

  • Talucder, Mohammad Samiul Ahsan;Kim, Joon;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.235-250
    • /
    • 2021
  • The overarching question of this study is how a typical rice cultivation system in Gimje, Korea was keeping up with the triple-win challenge of climate-smart agriculture (CSA). To answer this question, we have employed (1) quantitative data from direct measurement of energy, water, carbon and information flows in and out of a rice cultivation system and (2) appropriate metrics to assess production, efficiency, GHG fluxes, and resilience. The study site was one of the Korean Network of Flux measurement (KoFlux) sites (i.e., GRK) located at Gimje, Korea, managed by National Academy of Agricultural Science, Rural Development Administration. Fluxes of energy, water, carbon dioxide (CO2) and methane (CH4) were directly measured using eddy-covariance technique during the growing seasons of 2011, 2012 and 2014. The production indicators include gross primary productivity (GPP), grain yield, light use efficiency (LUE), water use efficiency (WUE), and carbon uptake efficiency (CUE). The GHG mitigation was assessed with indicators such as fluxes of carbon dioxide (FCO2), methane (FCH4), and nitrous oxide (FN2O). Resilience was assessed in terms of self-organization (S), using information-theoretic approach. Overall, the results demonstrated that the rice cultivation system at GRK was climate-smart in 2011 in a relative sense but failed to maintain in the following years. Resilience was high and changed little for three year. However, the apparent competing goals or trade-offs between productivity and GHG mitigation were found within individual years as well as between the years, causing difficulties in achieving the triple-win scenario. The pursuit of CSA requires for stakeholders to prioritize their goals (i.e., governance) and to practice opportune interventions (i.e., management) based on the feedback from real-time assessment of the CSA indicators (i.e., monitoring) - i.e., a purpose-driven visioneering.

Analysis of Perceptions of Student Start-up Policies in Science and Technology Colleges: Focusing on the KAIST case (과기특성화대학 학생창업정책에 대한 인식분석: KAIST 사례를 중심으로)

  • Tae-Uk Ahn;Chun-Ryol Ryu;Minjung Baek
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.2
    • /
    • pp.197-214
    • /
    • 2024
  • This study aimed to investigate students' perceptions at science and technology specialized universities towards entrepreneurship support policies and to derive policy improvement measures by applying a bottom-up approach to reflect the requirements of the policy beneficiaries, i.e., the students. Specifically, the research explored effective execution strategies for student entrepreneurship support policies through a survey and analysis of KAIST students. The findings revealed that KAIST students recognize the urgent need for improvement in sharing policy objectives with the student entrepreneurship field, reflecting the opinions of the campus entrepreneurship scene in policy formulation, and constructing an entrepreneurship-friendly academic system for nurturing student entrepreneurs. Additionally, there was a highlighted need for enhancement in the capacity of implementing agencies, as well as in marketing and market development capabilities, and organizational management and practical skills as entrepreneurs within the educational curriculum. Consequently, this study proposes the following improvement measures: First, it calls for enhanced transparency and accessibility of entrepreneurship support policies, ensuring students clearly understand policy objectives and can easily access information. Second, it advocates for student-centered policy development, where students' opinions are actively incorporated to devise customized policies that consider their needs and the actual entrepreneurship environment. Third, there is a demand for improving entrepreneurship-friendly academic systems, encouraging more active participation in entrepreneurship activities by adopting or refining academic policies that recognize entrepreneurship activities as credits or expand entrepreneurship-related courses. Based on these results, it is expected that this research will provide valuable foundational data to actively support student entrepreneurship in science and technology specialized universities, foster an entrepreneurial spirit, and contribute to the creation of an innovation-driven entrepreneurship ecosystem that contributes to technological innovation and social value creation.

  • PDF