• Title/Summary/Keyword: Data term

Search Result 7,606, Processing Time 0.034 seconds

FINANCIAL MODELS INDUCED FROM AUXILIARY INDICES AND TWITTER DATA

  • Oh, Jae-Pill
    • Korean Journal of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.529-552
    • /
    • 2014
  • As we know, some indices and data are strong influence to the price movement of some assets now, but not to another assets and in future. Thus we define some asset models for several time intervals; intraday, weekly, monthly, and yearly asset models. We define these asset models by using Brownian motion with volatility and Poisson process, and several deterministic functions(index function, twitter data function and big-jump simple function etc). In our asset models, these deterministic functions are the positive or negative levels of auxiliary indices, of analyzed data, and for imminent and extreme state(for example, financial shock or the highest popularity in the market). These functions determined by indices, twitter data and shocking news are a kind of one of speciality of our asset models. For reasonableness of our asset models, we introduce several real data, figurers and tables, and simulations. Perhaps from our asset models, for short-term or long-term investment, we can classify and reference many kinds of usual auxiliary indices, information and data.

Crime amount prediction based on 2D convolution and long short-term memory neural network

  • Dong, Qifen;Ye, Ruihui;Li, Guojun
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.208-219
    • /
    • 2022
  • Crime amount prediction is crucial for optimizing the police patrols' arrangement in each region of a city. First, we analyzed spatiotemporal correlations of the crime data and the relationships between crime and related auxiliary data, including points-of-interest (POI), public service complaints, and demographics. Then, we proposed a crime amount prediction model based on 2D convolution and long short-term memory neural network (2DCONV-LSTM). The proposed model captures the spatiotemporal correlations in the crime data, and the crime-related auxiliary data are used to enhance the regional spatial features. Extensive experiments on real-world datasets are conducted. Results demonstrated that capturing both temporal and spatial correlations in crime data and using auxiliary data to extract regional spatial features improve the prediction performance. In the best case scenario, the proposed model reduces the prediction error by at least 17.8% and 8.2% compared with support vector regression (SVR) and LSTM, respectively. Moreover, excessive auxiliary data reduce model performance because of the presence of redundant information.

Predicting the Number of Confirmed COVID-19 Cases Using Deep Learning Models with Search Term Frequency Data (검색어 빈도 데이터를 반영한 코로나 19 확진자수 예측 딥러닝 모델)

  • Sungwook Jung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.387-398
    • /
    • 2023
  • The COVID-19 outbreak has significantly impacted human lifestyles and patterns. It was recommended to avoid face-to-face contact and over-crowded indoor places as much as possible as COVID-19 spreads through air, as well as through droplets or aerosols. Therefore, if a person who has contacted a COVID-19 patient or was at the place where the COVID-19 patient occurred is concerned that he/she may have been infected with COVID-19, it can be fully expected that he/she will search for COVID-19 symptoms on Google. In this study, an exploratory data analysis using deep learning models(DNN & LSTM) was conducted to see if we could predict the number of confirmed COVID-19 cases by summoning Google Trends, which played a major role in surveillance and management of influenza, again and combining it with data on the number of confirmed COVID-19 cases. In particular, search term frequency data used in this study are available publicly and do not invade privacy. When the deep neural network model was applied, Seoul (9.6 million) with the largest population in South Korea and Busan (3.4 million) with the second largest population recorded lower error rates when forecasting including search term frequency data. These analysis results demonstrate that search term frequency data plays an important role in cities with a population above a certain size. We also hope that these predictions can be used as evidentiary materials to decide policies, such as the deregulation or implementation of stronger preventive measures.

The Relation among Brand Value, Relationship Value, Market Orientation and Performance in B2B (B2B 거래에서 브랜드가치, 관계가치, 시장지향성 그리고 성과에 관한 연구)

  • Park, Seung-Hwan;Han, Sang-Seol
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.9
    • /
    • pp.53-62
    • /
    • 2018
  • Purpose - The focus of this study is to investigate the structural influences such as brand value, relationship value, market orientation, long-term orientation, and performance. The effects of brand value and relationship value on the differences on transaction performance in b2b was investigated. Research design, data, and methodology - The subject of this study was a liquor and beverage distribution company that deals in b2b. The research hypothesis is based on literature of the preceding research analysis of brand value, relationship value, market orientation and long-term orientation. This study has constructs that was defined operationally by referencing previous studies. Operational questionnaire was used to investigate the target key staff who work in the liquor and beverage distribution company. 178 survey data were used for empirical analysis to prove the hypothesis. This study used structural equation techniques(AMOS) to prove the research hypothesis. Results - The main results of this empirical study were as follows. First, supplier's brand awareness has a positive effect on market orientation, but did not affect long-term orientation. Brand awareness of suppliers indicates that they are not directly related to long-term orientation. Second, supplier's brand image has a positive effect on market orientation and long-term orientation in b2b transaction. So, the brand image and reputation of the supplier suggest that it is important for the b2b transaction to have a market orientation tendency or a long-term orientation. Third, supplier's relationship value has a positive effect on long-term orientation, but does not affect market orientation. Relationship value indicates that they are not directly related to market orientations of the buyer. Fourth, Market orientation has a positive effect on long-term orientation and marketing performance and long-term orientation has a positive effect on marketing performance in b2b. Additionally, the buyers market and long term orientation are important factors in marketing performance in b2b. ' Conclusions - Based on empirical results, this study confirmed that brand image rather than brand awareness positively influenced long-term orientation as well as market orientation in b2b. Relationship value can be found in transactions, which is important for long-term orientation. Especially, these findings are suggestive in the consumer goods distribution market.

A remote long-term and high-frequency wind measurement system: design, comparison and field testing

  • Zhao, Ning;Huang, Guoqing;Liu, Ruili;Peng, Liuliu
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.21-29
    • /
    • 2020
  • The wind field measurement of severe winds such as hurricanes (or typhoons), thunderstorm downbursts and other gales is important issue in wind engineering community, both for the construction and health monitoring of the wind-sensitive structures. Although several wireless data transmission systems have been available for the wind field measurement, most of them are not specially designed for the wind data measurement in structural wind engineering. Therefore, the field collection is still dominant in the field of structural wind engineering at present, especially for the measurement of the long-term and high-frequency wind speed data. In this study, for remote wind field measurement, a novel wireless long-term and high-frequency wind data acquisition system with the functions such as remote control and data compression is developed. The system structure and the collector are firstly presented. Subsequently, main functions of the collector are introduced. Also novel functions of the system and the comparison with existing systems are presented. Furthermore, the performance of this system is evaluated. In addition to as the wireless transmission for wind data and hardware integration for the collector, the developed system possesses a few novel features, such as the modification of wind data collection parameters by the remote control, the remarkable data compression before the data wireless transmission and monitoring the data collection by the cell phone application. It can be expected that this system would have wide applications in wind, meteorological and other communities.

A Fuzzy Window Mechanism for Information Differentiation in Mining Data Streams (데이터 스트림 마이닝에서 정보 중요성 차별화를 위한 퍼지 윈도우 기법)

  • Chang, Joong-Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4183-4191
    • /
    • 2011
  • Considering the characteristics of a data stream whose data elements are continuously generated and may change over time, there have been many techniques to differentiate the importance of data elements in a data stream by their generation time. The conventional techniques are efficient to get an analysis result focusing on the recent information in a data stream, but they have a limitation to differentiate the importance of information in various ways more flexible. An information differentiation technique based on the term of a fuzzy set can be an alternative way to compensate the limitation. A term of a fuzzy set has been widely used in various data mining fields, which can overcome the sharp boundary problem and give an analysis result reflecting the requirements in real world applications more. In this paper, a fuzzy window mechanism is proposed, which is adapting a term of a fuzzy set and is efficiently used to differentiate the importance of information in mining data streams. Basic concepts including fuzzy calendars are described first, and subsequently details on data stream mining of weighted patterns using a fuzzy window technique are described.

The Effect of Prior Price Trends on Optimistic Forecasting (이전 가격 트렌드가 낙관적 예측에 미치는 영향)

  • Kim, Young-Doo
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.10
    • /
    • pp.83-89
    • /
    • 2018
  • Purpose - The purpose of this study examines when the optimism impact on financial asset price forecasting and the boundary condition of optimism in the financial asset price forecasting. People generally tend to optimistically forecast their future. Optimism is a nature of human beings and optimistic forecasting observed in daily life. But is it always observed in financial asset price forecasting? In this study, two factors were focused on considering whether the optimism that people have applied to predicting future performance of financial investment products (e.g., mutual fund). First, this study examined whether the degree of optimism varied depending on the direction of the prior price trend. Second, this study examined whether the degree of optimism varied according to the forecast period by dividing the future forecasted by people into three time horizon based on forecast period. Research design, data, and methodology - 2 (prior price trend: rising-up trend vs falling-down trend) × 3 (forecast time horizon: short term vs medium term vs long term) experimental design was used. Prior price trend was used between subject and forecast time horizon was used within subject design. 169 undergraduate students participated in the experiment. χ2 analysis was used. In this study, prior price trend divided into two types: rising-up trend versus falling-down trend. Forecast time horizon divided into three types: short term (after one month), medium term (after one year), and long term (after five years). Results - Optimistic price forecasting and boundary condition was found. Participants who were exposed to falling-down trend did not make optimistic predictions in the short term, but over time they tended to be more optimistic about the future in the medium term and long term. However, participants who were exposed to rising-up trend were over-optimistic in the short term, but over time, less optimistic in the medium and long term. Optimistic price forecasting was found when participants forecasted in the long term. Exposure to prior price trends (rising-up trend vs falling-down trend) was a boundary condition of optimistic price forecasting. Conclusions - The results indicated that individuals were more likely to be impacted by prior price tends in the short term time horizon, while being optimistic in the long term time horizon.

Estimating the Term Structure of Interest Rates Using Mixture of Weighted Least Squares Support Vector Machines (가중 최소제곱 서포트벡터기계의 혼합모형을 이용한 수익률 기간구조 추정)

  • Nau, Sung-Kyun;Shim, Joo-Yong;Hwang, Chang-Ha
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.1
    • /
    • pp.159-168
    • /
    • 2008
  • Since the term structure of interest rates (TSIR) has longitudinal data, we should consider as input variables both time left to maturity and time simultaneously to get a more useful and more efficient function estimation. However, since the resulting data set becomes very large, we need to develop a fast and reliable estimation method for large data set. Furthermore, it tends to overestimate TSIR because data are correlated. To solve these problems we propose a mixture of weighted least squares support vector machines. We recognize that the estimate is well smoothed and well explains effects of the third stock market crash in USA through applying the proposed method to the US Treasury bonds data.

Application of Urban Stream Discharge Simulation Using Short-term Rainfall Forecast (단기 강우예측 정보를 이용한 도시하천 유출모의 적용)

  • Yhang, Yoo Bin;Lim, Chang Mook;Yoon, Sun Kwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.69-79
    • /
    • 2017
  • In this study, we developed real-time urban stream discharge forecasting model using short-term rainfall forecasts data simulated by a regional climate model (RCM). The National Centers for Environmental Prediction (NCEP) Climate Forecasting System (CFS) data was used as a boundary condition for the RCM, namely the Global/Regional Integrated Model System(GRIMs)-Regional Model Program (RMP). In addition, we make ensemble (ESB) forecast with different lead time from 1-day to 3-day and its accuracy was validated through temporal correlation coefficient (TCC). The simulated rainfall is compared to observed data, which are automatic weather stations (AWS) data and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA 3B43; 3 hourly rainfall with $0.25^{\circ}{\times}0.25^{\circ}$ resolution) data over midland of Korea in July 26-29, 2011. Moreover, we evaluated urban rainfall-runoff relationship using Storm Water Management Model (SWMM). Several statistical measures (e.g., percent error of peak, precent error of volume, and time of peak) are used to validate the rainfall-runoff model's performance. The correlation coefficient (CC) and the Nash-Sutcliffe efficiency (NSE) are evaluated. The result shows that the high correlation was lead time (LT) 33-hour, LT 27-hour, and ESB forecasts, and the NSE shows positive values in LT 33-hour, and ESB forecasts. Through this study, it can be expected to utilizing the real-time urban flood alert using short-term weather forecast.

A recommendation system for assisting devices in long-term care insurance (의사결정나무기법을 활용한 장기요양 복지용구 권고모형 개발)

  • Han, Eun-Jeong;Park, Sanghee;Lee, JungSuk;Kim, Dong-Geon
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.693-706
    • /
    • 2018
  • It is very important to support the elderly with disability ageing in place. Assisting devices can help them to live independently in their community; however, they have to be used appropriately to meet care needs. This study develops an assisting device recommendation system for the beneficiaries of long-term care insurance that include algorithms to decide the most appropriate type of assisting device for beneficiaries. We used long-term care (LTC) insurance data for grade assessment including 8,084 beneficiaries from July 2015 to June 2016. In addition, we collected standard care plans for assisting devices, that power-assessors made, considering their performance and ability that could subsequently be matched with grade assessment data. We used a decision-tree model in data-mining to develop the model. Finally, we developed 15 algorithms for recommending assisting devices. The findings might be useful in evidence-based care planning for assisting devices and can contribute to enhancing independence and safety in LTC.