• Title/Summary/Keyword: Data segmentation

Search Result 1,250, Processing Time 0.03 seconds

Graph-based Segmentation for Scene Understanding of an Autonomous Vehicle in Urban Environments (무인 자동차의 주변 환경 인식을 위한 도시 환경에서의 그래프 기반 물체 분할 방법)

  • Seo, Bo Gil;Choe, Yungeun;Roh, Hyun Chul;Chung, Myung Jin
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • In recent years, the research of 3D mapping technique in urban environments obtained by mobile robots equipped with multiple sensors for recognizing the robot's surroundings is being studied actively. However, the map generated by simple integration of multiple sensors data only gives spatial information to robots. To get a semantic knowledge to help an autonomous mobile robot from the map, the robot has to convert low-level map representations to higher-level ones containing semantic knowledge of a scene. Given a 3D point cloud of an urban scene, this research proposes a method to recognize the objects effectively using 3D graph model for autonomous mobile robots. The proposed method is decomposed into three steps: sequential range data acquisition, normal vector estimation and incremental graph-based segmentation. This method guarantees the both real-time performance and accuracy of recognizing the objects in real urban environments. Also, it can provide plentiful data for classifying the objects. To evaluate a performance of proposed method, computation time and recognition rate of objects are analyzed. Experimental results show that the proposed method has efficiently in understanding the semantic knowledge of an urban environment.

An Exploratory Study for Analyzing the Needs of the Customers Who Use Academic Information Service (학술정보 서비스 이용고객의 니즈 분석을 위한 탐색적 연구)

  • Yoon, Jong-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.215-224
    • /
    • 2012
  • This study performs an exploratory investigation of the needs of the customers who use academic information service from a research institute, K, that provides information services for domestic academic institutions of natural science and technology. K institute is planning customized services in order to improve customer satisfaction on the academic information service And therefore, the institute begins the research on customer needs analysis and customer segmentation. The research is regarded as well-timed, because CRM implementation in public organizations has been activated recently. Data mining and data warehousing techniques were used for pilot analyses. For the purpose of customer segmentation, a mixed segmentation model, which adds product life cycle concept to the 'balanced customer segmentation' model, which in turn considers the value of customers from the organizational viewpoint and the value of organizations from the customer's viewpoint, simultaneously, was applied. The result of investigation indicated that, in the case of K, 'balanced customer segmentation' and 'contents reach approach' which uses data warehouse/OLAP, rather than those customer segmentation techniques that are often used within the industry, are the more potent ways of approach. This exploratory case study is expected to provide a useful guideline for 'deriving an organizationally unique CRM model' that recently is one of the hot topics in the CRM area.

Exploratory Study of the Applicability of Kompsat 3/3A Satellite Pan-sharpened Imagery Using Semantic Segmentation Model (아리랑 3/3A호 위성 융합영상의 Semantic Segmentation을 통한 활용 가능성 탐색 연구)

  • Chae, Hanseong;Rhim, Heesoo;Lee, Jaegwan;Choi, Jinmu
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1889-1900
    • /
    • 2022
  • Roads are an essential factor in the physical functioning of modern society. The spatial information of the road has much longer update cycle than the traffic situation information, and it is necessary to generate the information faster and more accurately than now. In this study, as a way to achieve that goal, the Pan-sharpening technique was applied to satellite images of Kompsat 3 and 3A to improve spatial resolution. Then, the data were used for road extraction using the semantic segmentation technique, which has been actively researched recently. The acquired Kompsat 3/3A pan-sharpened images were trained by putting it into a U-Net based segmentation model along with Massachusetts road data, and the applicability of the images were evaluated. As a result of training and verification, it was found that the model prediction performance was maintained as long as certain conditions were maintained for the input image. Therefore, it is expected that the possibility of utilizing satellite images such as Kompsat satellite will be even higher if rich training data are constructed by applying a method that minimizes the impact of surrounding environmental conditions affecting models such as shadows and surface conditions.

Feature Extraction by Line-clustering Segmentation Method (선군집분할방법에 의한 특징 추출)

  • Hwang Jae-Ho
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.401-408
    • /
    • 2006
  • In this paper, we propose a new class of segmentation technique for feature extraction based on the statistical and regional classification at each vertical or horizontal line of digital image data. Data is processed and clustered at each line, different from the point or space process. They are designed to segment gray-scale sectional images using a horizontal and vertical line process due to their statistical and property differences, and to extract the feature. The techniques presented here show efficient results in case of the gray level overlap and not having threshold image. Such images are also not easy to be segmented by the global or local threshold methods. Line pixels inform us the sectionable data, and can be set according to cluster quality due to the differences of histogram and statistical data. The total segmentation on line clusters can be obtained by adaptive extension onto the horizontal axis. Each processed region has its own pixel value, resulting in feature extraction. The advantage and effectiveness of the line-cluster approach are both shown theoretically and demonstrated through the region-segmental carotid artery medical image processing.

Reliability of Change Patterns of Road Surface Temperature and Road Segmentation based on Road Surface Temperature (노면온도 변화 패턴의 신뢰성 검증 및 노면온도에 근거한 도로구간 분할 방법 연구)

  • Yang, Choong Heon;Yoon, Chun Joo;Kim, Jin Guk;Park, Jae Hong;Yun, Duk Geun
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • PURPOSES : This study evaluates the reliability of the patterns of changes in the road surface temperature during winter using a statistical technique. In addition, a flexible road segmentation method is developed based on the collected road surface temperature data. METHODS : To collect and analyze the data, a thermal mapping system that could be attached to a survey vehicle along with various other sensors was employed. We first selected the test route based on the date and the weather and topographical conditions, since these factors affect the patterns of changes in the road surface temperature. Each route was surveyed a total of 10 times on a round-trip basis at the same times (5 AM to 6 AM). A correlation analysis was performed to identify whether the weather conditions reported for the survey dates were consistent with the actual conditions. In addition, we developed a method for dividing the road into sections based on the consecutive changes in the road surface temperature for use in future applications. Specifically, in this method, the road surface temperature data collected using the thermal mapping system was compared continuously with the average values for the various road sections, and the road was divided into sections based on the temperature. RESULTS : The results showed that the comparison of the reported and actual weather conditions and the standard deviation in the observed road surface temperatures could produce a good indicator of the reliability of the patterns of the changes in the road surface temperature. CONCLUSIONS : This research shows how road surface temperature data can be evaluated using a statistical technique. It also confirms that roads should be segmented based on the changes in the temperature and not using a uniform segmentation method.

Tracking Method of Dynamic Smoke based on U-net (U-net기반 동적 연기 탐지 기법)

  • Gwak, Kyung-Min;Rho, Young J.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.81-87
    • /
    • 2021
  • Artificial intelligence technology is developing as it enters the fourth industrial revolution. Active researches are going on; visual-based models using CNNs. U-net is one of the visual-based models. It has shown strong performance for semantic segmentation. Although various U-net studies have been conducted, studies on tracking objects with unclear outlines such as gases and smokes are still insufficient. We conducted a U-net study to tackle this limitation. In this paper, we describe how 3D cameras are used to collect data. The data are organized into learning and test sets. This paper also describes how U-net is applied and how the results is validated.

Market Segmentation Based on Types of Motivations to Visit Coffee Shops (커피전문점 방문동기유형에 따른 시장세분화)

  • Lee, Yong-Sook;Kim, Eun-Jung;Park, Heung-Jin
    • The Korean Journal of Franchise Management
    • /
    • v.7 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • Purpose - The primary purpose of this study is to employ effective marketing methods using market segmentation of coffee shops by determining how motivations to visit coffee shops have different impacts on demographic profile of visitors and characteristics of coffee shop visits, so as to draw out a better understanding of customers of coffee market. Research design, data, and methodology - Data were collected using surveys of self-administered questionnaires toward coffee shop users in Daejeon, Korea. A number of samples used in data analysis were 253 excluding unusable responses. The data were analyzed through frequency, reliability, and factor analysis using SPSS 20.0. Factor analysis was conducted through the principal component analysis and varimax rotation method to derive factors of one or more eigen values. In addition, the cluster analysis, multivariate ANOVA, and cross-tab analysis were used for the market segmentation based on the types of motivation for coffee shop visits. The process of the cluster analysis is as follows. Four clusters were derived through hierarchical clustering, and k-means cluster analysis was then carried out using mean value of the four clusters as the initial seed value. Result - The factor analysis delineated four dimensions of motivation to visit coffee shops: ostentation motivation, hedonic motivation, esthetic motivation, utility motivation. The cluster analysis yielded four clusters: utility and esthetic seekers, hedonic seekers, utility seekers, ostentation seekers. In order to further specify the profile of four clusters, each cluster was cross tabulated with socio-demographics and characteristics of coffee shop visits. Four clusters are significantly different from each other by four types of motivations for coffee shop visits. Conclusions - This study has empirically examined the difference in demographic profile of visitors and characteristics of coffee shop visits by motivation to visit coffee shops. There are significant differences according to age, education background, marital status, occupation and monthly income. In addition, coffee shops use pattern characterization in frequency of visits to coffee shops, relationships with companion, purpose of visit, information sources, brand type, average expense per visit, important elements of selection attribute were significantly different depending on motivations for coffee shop visits.

Development of the forest type classification technique for the mixed forest with coniferous and broad-leaved species using the high resolution satellite data

  • Sasakawa, Hiroshi;Tsuyuki, Satoshi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.467-469
    • /
    • 2003
  • This research aimed to develop forest type classification technique for the mixed forest with coniferous and broad-leaved species using the high resolution satellite data. QuickBird data was used as satellite data. The method of this research was to extract satellite data for every single tree crown using image segmentation technique, then to evaluate the accuracy of classification by changing grouping criteria such as tree species, families, coniferous or broad-leaved species, and timber prices. As a result, the classification of tree species and families level was inaccurate, on the other hand, coniferous or broad-leaved species and timber price level was high accurate.

  • PDF

Simulator-Driven Sieving Data Generation for Aggregate Image Analysis

  • DaeHan Ahn
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.3
    • /
    • pp.249-255
    • /
    • 2024
  • Advancements in deep learning have enhanced vision-based aggregate analysis. However, further development and studies have encountered challenges, particularly in acquiring large-scale datasets. Data collection is costly and time-consuming, posing a significant challenge in acquiring large datasets required for training neural networks. To address this issue, this study introduces a simulation that efficiently generates the necessary data and labels for training neural networks. We utilized a genetic algorithm (GA) to create optimized lists of aggregates based on the specified values of weight and particle size distribution for the aggregate sample. This enabled sample data collection without conducting sieving tests. Our evaluation of the proposed simulation and GA methodology revealed errors of 1.3% and 2.7 g for aggregate size distribution and weight, respectively. Furthermore, we assessed a segmentation model trained with data from the simulation, achieving a promising preliminary F1 score of 78.18 on the actual aggregate image.

A NUMERICAL METHOD FOR THE MODIFIED VECTOR-VALUED ALLEN-CAHN PHASE-FIELD MODEL AND ITS APPLICATION TO MULTIPHASE IMAGE SEGMENTATION

  • Lee, Hyun Geun;Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.27-41
    • /
    • 2014
  • In this paper, we present an efficient numerical method for multiphase image segmentation using a multiphase-field model. The method combines the vector-valued Allen-Cahn phase-field equation with initial data fitting terms containing prescribed interface width and fidelity constants. An efficient numerical solution is achieved using the recently developed hybrid operator splitting method for the vector-valued Allen-Cahn phase-field equation. We split the modified vector-valued Allen-Cahn equation into a nonlinear equation and a linear diffusion equation with a source term. The linear diffusion equation is discretized using an implicit scheme and the resulting implicit discrete system of equations is solved by a multigrid method. The nonlinear equation is solved semi-analytically using a closed-form solution. And by treating the source term of the linear diffusion equation explicitly, we solve the modified vector-valued Allen-Cahn equation in a decoupled way. By decoupling the governing equation, we can speed up the segmentation process with multiple phases. We perform some characteristic numerical experiments for multiphase image segmentation.