• 제목/요약/키워드: Data prediction model

검색결과 5,355건 처리시간 0.031초

Developing an User Location Prediction Model for Ubiquitous Computing based on a Spatial Information Management Technique

  • Choi, Jin-Won;Lee, Yung-Il
    • Architectural research
    • /
    • 제12권2호
    • /
    • pp.15-22
    • /
    • 2010
  • Our prediction model is based on the development of "Semantic Location Model." It embodies geometrical and topological information which can increase the efficiency in prediction and make it easy to manipulate the prediction model. Data mining is being implemented to extract the inhabitant's location patterns generated day by day. As a result, the self-learning system will be able to semantically predict the inhabitant's location in advance. This context-aware system brings about the key component of the ubiquitous computing environment. First, we explain the semantic location model and data mining methods. Then the location prediction model for the ubiquitous computing system is described in details. Finally, the prototype system is introduced to demonstrate and evaluate our prediction model.

Bayesian Typhoon Track Prediction Using Wind Vector Data

  • Han, Minkyu;Lee, Jaeyong
    • Communications for Statistical Applications and Methods
    • /
    • 제22권3호
    • /
    • pp.241-253
    • /
    • 2015
  • In this paper we predict the track of typhoons using a Bayesian principal component regression model based on wind field data. Data is obtained at each time point and we applied the Bayesian principal component regression model to conduct the track prediction based on the time point. Based on regression model, we applied to variable selection prior and two kinds of prior distribution; normal and Laplace distribution. We show prediction results based on Bayesian Model Averaging (BMA) estimator and Median Probability Model (MPM) estimator. We analysis 8 typhoons in 2006 using data obtained from previous 6 years (2000-2005). We compare our prediction results with a moving-nest typhoon model (MTM) proposed by the Korea Meteorological Administration. We posit that is possible to predict the track of a typhoon accurately using only a statistical model and without a dynamical model.

Support Vector Machine을 이용한 초기 소프트웨어 품질 예측 (Early Software Quality Prediction Using Support Vector Machine)

  • 홍의석
    • 한국IT서비스학회지
    • /
    • 제10권2호
    • /
    • pp.235-245
    • /
    • 2011
  • Early criticality prediction models that determine whether a design entity is fault-prone or not are becoming more and more important as software development projects are getting larger. Effective predictions can reduce the system development cost and improve software quality by identifying trouble-spots at early phases and proper allocation of effort and resources. Many prediction models have been proposed using statistical and machine learning methods. This paper builds a prediction model using Support Vector Machine(SVM) which is one of the most popular modern classification methods and compares its prediction performance with a well-known prediction model, BackPropagation neural network Model(BPM). SVM is known to generalize well even in high dimensional spaces under small training data conditions. In prediction performance evaluation experiments, dimensionality reduction techniques for data set are not used because the dimension of input data is too small. Experimental results show that the prediction performance of SVM model is slightly better than that of BPM and polynomial kernel function achieves better performance than other SVM kernel functions.

Crime amount prediction based on 2D convolution and long short-term memory neural network

  • Dong, Qifen;Ye, Ruihui;Li, Guojun
    • ETRI Journal
    • /
    • 제44권2호
    • /
    • pp.208-219
    • /
    • 2022
  • Crime amount prediction is crucial for optimizing the police patrols' arrangement in each region of a city. First, we analyzed spatiotemporal correlations of the crime data and the relationships between crime and related auxiliary data, including points-of-interest (POI), public service complaints, and demographics. Then, we proposed a crime amount prediction model based on 2D convolution and long short-term memory neural network (2DCONV-LSTM). The proposed model captures the spatiotemporal correlations in the crime data, and the crime-related auxiliary data are used to enhance the regional spatial features. Extensive experiments on real-world datasets are conducted. Results demonstrated that capturing both temporal and spatial correlations in crime data and using auxiliary data to extract regional spatial features improve the prediction performance. In the best case scenario, the proposed model reduces the prediction error by at least 17.8% and 8.2% compared with support vector regression (SVR) and LSTM, respectively. Moreover, excessive auxiliary data reduce model performance because of the presence of redundant information.

의약품 처방 데이터 기반의 지역별 예상 환자수 및 위험도 예측 (A Prediction of Number of Patients and Risk of Disease in Each Region Based on Pharmaceutical Prescription Data)

  • 장정현;김영재;최종혁;김창수;나스리디노프 아지즈
    • 한국멀티미디어학회논문지
    • /
    • 제21권2호
    • /
    • pp.271-280
    • /
    • 2018
  • Recently, big data has been growing rapidly due to the development of IT technology. Especially in the medical field, big data is utilized to provide services such as patient-customized medical care, disease management and disease prediction. In Korea, 'National Health Alarm Service' is provided by National Health Insurance Corporation. However, the prediction model has a problem of short-term prediction within 3 days and unreliability of social data used in prediction model. In order to solve these problems, this paper proposes a disease prediction model using medicine prescription data generated from actual patients. This model predicts the total number of patients and the risk of disease in each region and uses the ARIMA model for long-term predictions.

Comparison of prediction methods for Nonlinear Time series data with Intervention1)

  • Lee, Sung-Duck;Kim, Ju-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권2호
    • /
    • pp.265-274
    • /
    • 2003
  • Time series data are influenced by the external events such as holiday, strike, oil shock, and political change, so the external events cause a sudden change to the time series data. We regard the observation as outlier that occurred as a result of external events. In general, it is called intervention if we know the period and the reason of external events, and it makes an analyst difficult to establish a time series model. Therefore, it is important that we analyze the styles and effects of intervention. In this paper, we considered the linear time series model with invention and compared with nonlinear time series models such as ARCH, GARCH model and also we compared with the combination prediction method that Tong(1990) introduced. In the practical case study, we compared prediction power with RMSE among linear, nonlinear time series model with intervention and combination prediction method.

  • PDF

Ovarian Cancer Prognostic Prediction Model Using RNA Sequencing Data

  • Jeong, Seokho;Mok, Lydia;Kim, Se Ik;Ahn, TaeJin;Song, Yong-Sang;Park, Taesung
    • Genomics & Informatics
    • /
    • 제16권4호
    • /
    • pp.32.1-32.7
    • /
    • 2018
  • Ovarian cancer is one of the leading causes of cancer-related deaths in gynecological malignancies. Over 70% of ovarian cancer cases are high-grade serous ovarian cancers and have high death rates due to their resistance to chemotherapy. Despite advances in surgical and pharmaceutical therapies, overall survival rates are not good, and making an accurate prediction of the prognosis is not easy because of the highly heterogeneous nature of ovarian cancer. To improve the patient's prognosis through proper treatment, we present a prognostic prediction model by integrating high-dimensional RNA sequencing data with their clinical data through the following steps: gene filtration, pre-screening, gene marker selection, integrated study of selected gene markers and prediction model building. These steps of the prognostic prediction model can be applied to other types of cancer besides ovarian cancer.

Application of transfer learning for streamflow prediction by using attention-based Informer algorithm

  • Fatemeh Ghobadi;Doosun Kang
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.165-165
    • /
    • 2023
  • Streamflow prediction is a critical task in water resources management and essential for planning and decision-making purposes. However, the streamflow prediction is challenging due to the complexity and non-linear nature of hydrological processes. The transfer learning is a powerful technique that enables a model to transfer knowledge from a source domain to a target domain, improving model performance with limited data in the target domain. In this study, we apply the transfer learning using the Informer model, which is a state-of-the-art deep learning model for streamflow prediction. The model was trained on a large-scale hydrological dataset in the source basin and then fine-tuned using a smaller dataset available in the target basin to predict the streamflow in the target basin. The results demonstrate that transfer learning using the Informer model significantly outperforms the traditional machine learning models and even other deep learning models for streamflow prediction, especially when the target domain has limited data. Moreover, the results indicate the effectiveness of streamflow prediction when knowledge transfer is used to improve the generalizability of hydrologic models in data-sparse regions.

  • PDF

A Study on the Insolvency Prediction Model for Korean Shipping Companies

  • Myoung-Hee Kim
    • 한국항해항만학회지
    • /
    • 제48권2호
    • /
    • pp.109-115
    • /
    • 2024
  • To develop a shipping company insolvency prediction model, we sampled shipping companies that closed between 2005 and 2023. In addition, a closed company and a normal company with similar asset size were selected as a paired sample. For this study, data of a total of 82 companies, including 42 closed companies and 42 general companies, were obtained. These data were randomly divided into a training set (2/3 of data) and a testing set (1/3 of data). Training data were used to develop the model while test data were used to measure the accuracy of the model. In this study, a prediction model for Korean shipping insolvency was developed using financial ratio variables frequently used in previous studies. First, using the LASSO technique, main variables out of 24 independent variables were reduced to 9. Next, we set insolvent companies to 1 and normal companies to 0 and fitted logistic regression, LDA and QDA model. As a result, the accuracy of the prediction model was 82.14% for the QDA model, 78.57% for the logistic regression model, and 75.00% for the LDA model. In addition, variables 'Current ratio', 'Interest expenses to sales', 'Total assets turnover', and 'Operating income to sales' were analyzed as major variables affecting corporate insolvency.

Development and Comparison of Data Mining-based Prediction Models of Building Fire Probability

  • 홍성관;정승렬
    • 인터넷정보학회논문지
    • /
    • 제19권6호
    • /
    • pp.101-112
    • /
    • 2018
  • A lot of manpower and budgets are being used to prevent fires, and only a small portion of the data generated during this process is used for disaster prevention activities. This study develops a prediction model of fire occurrence probability based on data mining in order to more actively use these data for disaster prevention activities. For this purpose, variables for predicting fire occurrence probability of various buildings were selected and data of construction administrative system, national fire information system, and Korea Fire Insurance Association were collected and integrated data set was constructed. After appropriate data cleansing and preprocessing, various data mining methodologies such as artificial neural network, decision trees, SVM, and Naive Bayesian were used to develop a prediction model of the fire occurrence probability of buildings. The most accurate model among the derived models is Linear SVM model which shows 68.42% as experimental data and 63.54% as verification data and it is the best model to predict fire occurrence probability of buildings. As this study develops the prediction model which uses only the set values of the specific ranges, future studies may explore more opportunites to use various setting values not shown in this study.