• Title/Summary/Keyword: Data modeling

Search Result 9,717, Processing Time 0.038 seconds

A Study on Validity of Applying Simplify modeling Method for Heating/Cooling Load Calculation (냉난방부하 계산의 단순화 모델링 기법 적용 타당성 검토에 관한 연구)

  • Kang, Yoon-Suk;Park, Jong-Il;Ihm, Pyeong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1386-1391
    • /
    • 2008
  • As the time goes by, the energy use in buildings are increasing threateningly. So, it is important to have an accurate energy load calculation for buildings. The accurate energy simulation program carries numerous input data. So, our purpose of this study is to verify the application of simplify modeling method which eliminates coordinates of building components instead of using full coordinates by using DOE2. After comparing original modeling method with simplify modeling method, we applied PAF for daylighting control in the building to verify the application of daylighting control in simplify modeling method. The results shows that there are little difference between original modeling and simplify modeling. Also it showed that application of daylighting control has little difference between original modeling so it is feasible to adapt simplify modeling. These results reveals that the application of simplify modeling is possible to predict energy load and use of the building.

  • PDF

Conceptual Data Modeling and Information Retrieval System Design (개념적 데이터 모델링과 정보검색 시스템 디자인)

  • Oh Sam-Gyun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.33 no.4
    • /
    • pp.133-156
    • /
    • 1999
  • The purpose of this paper is to show how conceptual data modeling can enhance current information retrieval (IR) systems. The conceptual database design provides for: 1) data mining capability to discover new knowledge based on the relationships between entities, and 2) integrating current separate databases into one IR system (e.g., integrating ISI Citation, a thesaurus, and bibliographic databases into one retrieval system) . Further, as new user requirements are unfolded, modifications of IR systems based on conceptual data modeling will be much easier to make than they were in the current IR systems because conceptual modeling facilitates flexible modifications. The enhanced Entity-Relationship (ER) model was employed in this study to develop conceptual schemas of IR data.

  • PDF

Development of a Grid Based Two-Dimensional Numerical Method for Flood Inundation Modeling Using Globally-Available DEM Data (범용 DEM 데이터를 이용한 2차원 홍수범람 모형의 개발)

  • Lee, Seung-Soo;Lee, Gi-Ha;Jung, Kwan-Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.659-663
    • /
    • 2010
  • In recent, flood inundation damages by hydraulic structure failures have increased drastically and thus a variety of countermeasures were needed to minimize such damages. A real-time flood inundation prediction technique is essential to protect and mitigate flood inundation damages. In the context of real time flood inundation modeling, this study aims to develop a grid based two-dimensional numerical method for flood inundation modeling using globally-available DEM data: SRTM with $90m{\times}90m$ spatial resolution. The newly-developed model guarantees computational efficiency in terms of geometric data processing by direct application of DEM for flood inundation modeling and also have good compatibility with various types of raster data when compared to a commercial model such as FLUMEN. The model, which employed the leap-frog algorithm to solve shallow water and continuity equations, can simulate inundating flow from channel to lowland and also returning flow from lowland to channel by comparing water levels between channel and lowland in real time. We applied the model to simulate the BaekSan levee break in the Nam river during a flood period from August 10 to 13, 2002. The simulation results had good agreements with the field-surveyed data in terms of inundated area and also showed physically-acceptable velocity vector maps with respect to inundating and returning flows.

  • PDF

A Study on the Data Extraction and Formalization for the Generation of Structural Analysis Model from Ship Design Data (선체 구조설계로부터 구조해석 모델 생성에 필요한 데이타의 추출과 정형화에 관한 연구)

  • Jae-Hwan Lee;Yong-Dae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.3
    • /
    • pp.90-99
    • /
    • 1993
  • As the finite element method has become a considerable and effective design tool in ship structural analysis, modeling of three dimensional finite element mesh is more necessary than before. However, the unique style and complexity of a ship usually make the modeling be hard and costly. Although most pre-processor of FEM software and geometric modeler provides modeling function, the capability is quite limited for complicated structure. In order to perform FEM modeling quickly, it is necessary to extract, rearrange, and formalize data from ship design database for partially automatic mesh generation. In this paper, the process of designing relational data tables from design data is shown as a part of analysis automation with the application of engineering database concept.

  • PDF

Analysis of the Cognitive Level of Meta-modeling Knowledge Components of Science Gifted Students Through Modeling Practice (모델링 실천을 통한 과학 영재학생들의 메타모델링 지식 구성요소별 인식수준 분석)

  • Kihyang, Kim;Seoung-Hey, Paik
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.1
    • /
    • pp.42-53
    • /
    • 2023
  • The purpose of this study is to obtain basic data for constructing a modeling practice program integrated with meta-modeling knowledge by analyzing the cognition level for each meta-modeling knowledge components through modeling practice in the context of the chemistry discipline content. A chemistry teacher conducted inquiry-based modeling practice including anomalous phenomena for 16 students in the second year of a science gifted school, and in order to analyze the cognition level for each of the three meta-modeling knowledge components such as model variability, model multiplicity, and modeling process, the inquiry notes recorded by the students and observation note recorded by the researcher were used for analysis. The recognition level was classified from 0 to 3 levels. As a result of the analysis, it was found that the cognition level of the modeling process was the highest and the cognition level of the multiplicity of the model was the lowest. The cause of the low recognitive level of model variability is closely related to students' perception of conceptual models as objective facts. The cause of the low cognitive level of model multiplicity has to do with the belief that there can only be one correct model for a given phenomenon. Students elaborated conceptual models using symbolic models such as chemical symbols, but lacked recognition of the importance of data interpretation affecting the entire modeling process. It is necessary to introduce preliminary activities that can explicitly guide the nature of the model, and guide the importance of data interpretation through specific examples. Training to consider and verify the acceptability of the proposed model from a different point of view than mine should be done through a modeling practice program.

Multiresidual approximation of Scattered Volumetric Data with Volumetric Non-Uniform Rational B-Splines (분산형 볼륨 데이터의 VNURBS 기반 다중 잔차 근사법)

  • Park, S.K.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.1
    • /
    • pp.27-38
    • /
    • 2007
  • This paper describes a multiresidual approximation method for scattered volumetric data modeling. The approximation method employs a volumetric NURBS or VNURBS as a data interpolating function and proposes two multiresidual methods as a data modeling algorithm. One is called as the residual series method that constructs a sequence of VNURBS functions and their algebraic summation produces the desired approximation. The other is the residual merging method that merges all the VNURBS functions mentioned above into one equivalent function. The first one is designed to construct wavelet-type multiresolution models and also to achieve more accurate approximation. And the second is focused on its improvement of computational performance with the save fitting accuracy for more practical applications. The performance results of numerical examples demonstrate the usefulness of VNURBS approximation and the effectiveness of multiresidual methods. In addition, several graphical examples suggest that the VNURBS approximation is applicable to various applications such as surface modeling and fitting problems.

GIS Based Realistic Weather Radar Data Visualization Technique

  • Jang, Bong-Joo;Lim, Sanghun
    • Journal of Multimedia Information System
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • In recent years, the quixotic nature and concentration of rainfall due to global climate change has intensified. To monitor localized heavy rainfalls, a reliable disaster monitoring and warning system with advanced remote observation technology and high-precision display is important. In this paper, we propose a GIS-based intuitive and realistic 3D radar data display technique for accurate and detailed weather analysis. The proposed technique performs 3D object modeling of various radar variables along with ray profiles and then displays stereoscopic radar data on detailed geographical locations. Simulation outcomes show that 3D object modeling of weather radar data can be processed in real time and that changes at each moment of rainfall events can be observed three-dimensionally on GIS.

Modeling of Daily Reference Evapotranspiration using Polynomial Networks Approach (PNA) (PNA를 이용한 일 기준증발산량의 모형화)

  • Kim, Seong-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.473-473
    • /
    • 2011
  • Group method of data handling neural networks model (GMDH-NNM) is used to estimate daily reference evapotranspiration (ETo) using limited climatic variables such as max temperature ($T_{max}$), min temperature ($T_{min}$), mean wind speed ($W_{mean}$), mean relative humidity ($RH_{mean}$) and sunshine duration (SD). And, for the performances of GMDH-NNM, it consists of training and test performances, respectively. The training and test performances are carried out using daily time series data, respectively. From this research, we evaluate the impact of GMDH-NNM for the modeling of the nonlinear time series data. We should, thus, construct the credible data of the daily ETo data using GMDH-NNM, and can suggest the methodology for the irrigation and drainage networks system. Furthermore, this research represents that the strong nonlinear relationship such as ETo modeling can be generalized using GMDH-NNM.

  • PDF

Fault Detection in the Semiconductor Etch Process Using the Seasonal Autoregressive Integrated Moving Average Modeling

  • Arshad, Muhammad Zeeshan;Nawaz, Javeria Muhammad;Hong, Sang Jeen
    • Journal of Information Processing Systems
    • /
    • v.10 no.3
    • /
    • pp.429-442
    • /
    • 2014
  • In this paper, we investigated the use of seasonal autoregressive integrated moving average (SARIMA) time series models for fault detection in semiconductor etch equipment data. The derivative dynamic time warping algorithm was employed for the synchronization of data. The models were generated using a set of data from healthy runs, and the established models were compared with the experimental runs to find the faulty runs. It has been shown that the SARIMA modeling for this data can detect faults in the etch tool data from the semiconductor industry with an accuracy of 80% and 90% using the parameter-wise error computation and the step-wise error computation, respectively. We found that SARIMA is useful to detect incipient faults in semiconductor fabrication.

A Study on EPCIS System Modeling by Data Modeling Method (데이터 모델링 기법을 이용한 EPCIS 시스템의 모델링에 관한 연구)

  • Li, Zhong-Shi
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.2
    • /
    • pp.177-183
    • /
    • 2012
  • Obtaining and applying information is considered as a critical task in the modern informationized society. Finding the one's necessary information and processing it into a detailed knowledge are becoming more priortized in the enormous amount of information. Data modelling is the process that does not only reflect the demands of the user but the one that also facilitates the user's comprehension of the model itself. Ultimately, data modelling fully supports the processes that are requisite for the implementation of a data base and minimizes the alternations of the model during the development of applications.