Journal of the Korean Operations Research and Management Science Society
/
v.21
no.3
/
pp.197-214
/
1996
Financial analysis of stock data usually involves extensive computation of large amount of time series data sets. To handle the large size of the data sets and complexity of the analyses, database management systems have been increasingly adaopted for efficient management of stock data. Specially, relational database management system is employed more widely due to its simplistic data management approach. However, the normalized two-dimensional tables and the structured query language of the relational system turn out to be less effective than expected in accommodating time series stock data as well as the various computational operations. This paper explores a new data management approach to stock data management on the basis of an object-oriented database management system (ODBMS), and proposes a data model supporting times series data storage and incorporating a set of financial analysis functions. In terms of functional stock data analysis, it specially focuses on a primitive set of operations such as variance of stock data. In accomplishing this, we first point out the problems of a relational approach to the management of stock data and show the strength of the ODBMS. We secondly propose an object model delineating the structural relationships among objects used in the stock data management and behavioral operations involved in the financial analysis. A prototype system is developed using a commercial ODBMS.
International Journal of Advanced Culture Technology
/
v.11
no.3
/
pp.338-345
/
2023
Nowadays, many companies are striving to turn customer value into business value. Customer Relationship Management is a management system that develops effective and efficient marketing strategies by classifying customers in detail based on their information, i.e. databases, and consists of various information technologies. To implement this management system, a customer integration database must be established, and customer characteristics (buying behavior, preferences, etc.) must be analyzed with the databases established and the behavior of each customer must be predicted. This study aims to systematically manage a large amount of customer data generated by companies that apply Customer Relationship Management, in order to develop data design and data governance strategies that should be considered to increase customer value and even company value. We mainly looked at the characteristics of customer relationship management and data governance, and then explored the link between the field of customer relationship management and data governance. In addition, we have developed a data strategy that companies need to perform data governance for customer relationship management.
Journal of the Korean Society for information Management
/
v.40
no.1
/
pp.51-71
/
2023
This study analyzed the government data quality management model, big data quality management model, and data lifecycle model for research data management, and analyzed the components common to each data quality management model. Those data quality management models are designed and proposed according to the lifecycle or based on the PDCA model according to the characteristics of target data, which is the object that performs quality management. And commonly, the components of planning, collection and construction, operation and utilization, and preservation and disposal are included. Based on this, the study proposed a process model for research data quality management, in particular, the research data quality management to be performed in a series of processes from collecting to servicing on a research data platform that provides services using research data as target data was discussed in the stages of planning, construction and operation, and utilization. This study has significance in providing knowledge based for research data quality management implementation methods.
Many previous studies of data quality have focused on the realization and evaluation of both data value quality and data service quality. These studies revealed that poor data value quality and poor data service quality were caused by poor data structure. In this study we focus on metadata management, namely, data structure quality and introduce the data quality management maturity model as a preferred maturity model. We empirically show that data quality improves as data management matures.
Purpose The purpose of this study is to identify problems of current educational facility data management and recommend a standardized terminology classification system as a solution. In addition, the research aims to present a preemptive and integrated disaster and safety management framework for educational facilities by seeking efficient business processes through secured data quality, systematic data management, and external data linkage and analysis. Design/methodology/approach A terminology classification system has been established through various processes including filtering and analysis of related data including laws, manuals, educational facilities accidents, and historical records. Furthermore, the terminology classification system has been further reviewed through several consultations with experts and practitioners. In addition, the accumulated data was refined according to the established standard terminology and an Excel database was developed. Based on the data, accident patterns occurred in educational facilities over the past 10 years were analyzed. Findings In the study, a template was developed to collect consistent data for the standardized disaster and safety management terminology classification system in educational facilities. In addition, the standardized data utilization methods are presented from the viewpoint of 'education facility disaster safety data management', 'data analysis and insight', 'business management through data', and 'leaping into big data management'.
Journal of Korea Society of Digital Industry and Information Management
/
v.6
no.2
/
pp.19-27
/
2010
Historical archived traffic data management system enables a long term time-series analysis and provides data necessary to acquire the constantly changing traffic conditions and to evaluate and analyze various traffic related strategies and policies. Such features are provided by maintaining highly reliable traffic data through scientific and systematic management. Now, the management systems for massive traffic data have a several problems such as, the storing and management methods of a large volume of archive data. In this paper, we describe how to storing and management for the massive traffic data and, we propose methodology for logical and physical architecture, collecting and storing, database design and implementation, process design of massive traffic data.
Journal of the Korean Operations Research and Management Science Society
/
v.41
no.3
/
pp.45-58
/
2016
Data are important in an organization because they are used in making decisions and obtaining insights. Furthermore, given the increasing importance of data in modern society, data governance should be requested to increase an organization's competitive power. However, data governance concepts have caused confusion because of the myriad of guidelines proposed by related institutions and researchers. In this study, we re-established the concept of ambiguous data governance and derived the top-level components by analyzing previous research. This study identified the components of data governance and quantitatively analyzed the relation between these components by using DEMATEL and context analysis techniques that are often used to solve complex problems. Three higher components (data compliance management, data quality management, and data organization management) and 13 lower components are derived as data governance components. Furthermore, importance analysis shows that data quality management, data compliance management, and data organization management are the top components of data governance in order of priority. This study can be used as a basis for presenting standards or establishing concepts of data governance.
In the present age of artificial intelligence and metaverse, research on the importance of data and the amount of data is actively being conducted. Among these data, medical data contains the most sensitive information of individuals, so research on data generation, storage, management, and disposal is urgently needed. This study analyzed the status of medical data management in the United States, Europe, and Korea, and identified and analyzed medical data management laws and implementation status through working-level staff working in medical sites. As a result of the analysis, about 70% of medical professionals were able to identify the absence of recognition and management of medical data. The survey subjects were limited to Gwangju and Jeollanam-do, and 237 medical workers were conducted. More than 54% of the awareness of medical record generation, storage, and management came out, but about 70% of the occupations except doctors, oriental doctors, and dentists did not recognize the medical record management method. As necessary for medical record management, cost and the need for professional managers were 91.4%. Through this study, it was confirmed that the expansion of legal education for medical workers, the enactment of related laws, and the need for sincere fostering of medical record managers were required.
Korean Journal of Computational Design and Engineering
/
v.13
no.4
/
pp.314-322
/
2008
This paper introduces an integration of Product Data Management (PDM) and Software Configuration Management (SCM). PDM and SCM have supported development of mechanical products and software products respectively. The importance of software components in the current products increases rapidly since the software enables the products to satisfy various customer requirements efficiently. Therefore the current product development needs enhanced product data management that can control both the hardware and software data seamlessly. This paper proposes an extended product data model for integrating SCM into PDM. The extension enables PDM document management to support the version control for software development. It also enables engineers to control both the software and hardware parts as integrated data objects during product configuration and engineering change management. The proposed model is implemented by using a commercial Product Lifecycle Management (PLM) system and a development of a network based robot system is tested by the implemented product development environment.
Journal of the Korean Society for Library and Information Science
/
v.57
no.3
/
pp.279-301
/
2023
The data-driven research environment is rapidly changing. Accordingly, domestic university libraries are also preparing to establish and operate research data management services to support university researchers. This study was designed to propose a research data management service to support researchers in science and technology specialized university libraries. In order to propose the service, 11 universities specializing in science and technology were selected from overseas and domestic universities and their research data management services were analyzed. Key categories were derived from analysis results, research data management, electronic research notebooks, and RDM training. In particular, the 'research data management' category included DMP, data collection, data management, data preservation, data sharing and publishing, data reuse, infrastructure and tools. And it consists of RDM guides and policies. The results of this study will be helpful in introducing and operating research data management services in science and technology specialized university libraries.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.