• Title/Summary/Keyword: Data input error

Search Result 908, Processing Time 0.03 seconds

A Study on Optimal Polynomial Neural Network for Nonlinear Process (비선형 공정을 위한 최적 다항식 뉴럴네트워크에 관한 연구)

  • Kim, Wan-Su;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.149-151
    • /
    • 2005
  • In this paper, we propose the Optimal Polynomial Neural Networks(PNN) for nonlinear process. The PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to feedforward Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and can be generated. The each node of PNN structure uses several types of high-order polynomial such as linear, quadratic and modified quadratic, and is connected as various kinds of multi-variable inputs. The conventional PNN depends on experience of a designer that select No. of input variable, input variable and polynomial type. Therefore it is very difficult a organizing of optimized network. The proposed algorithm identified and selected No. of input variable, input variable and polynomial type by using Genetic Algorithms(GAs). In the sequel the proposed model shows not only superior results to the existing models, but also pliability in organizing of optimal network. Medical Imaging System(MIS) data is simulated in order to confirm the efficiency and feasibility of the proposed approach in this paper.

  • PDF

A Study on the On-Line Computer Systems using the Radio Communications (무선방식에 의한 전자계산기 On-Line 계통의 설계에 관한 연구)

  • 김용득;박계태
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.1
    • /
    • pp.14-21
    • /
    • 1979
  • This paper deals with tIne interface error in the on-line computer systems by using the FSK radio communications. The wideband frequency shrift keying method is used for briary data transmission between the remote terminals and the main computer. To mintmize the error rate In the decoder systems of the main computer, a synchronizing pulse is added to the frame, so that the phase In both receiver and transmitter are synchronized. When the information signal with a constant error bit is received through FSK, It is designed to use the microprocessor for calculation of error bit. As results, most bit error are caused in FSK radio communications. and a few error bit Is me - asured to enter the mirroprocessor from the input buffer.

  • PDF

A Study on Converting the Data of Probability of Hit(Ph) for OneSAF Model (OneSAF 모델을 위한 명중률 데이터 변환 방법)

  • Kim, Gun In;Kang, Tae Ho;Seo, Woo Duck;Pyun, Jae Jung
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.83-91
    • /
    • 2020
  • To use the OneSAF model for the analysis of Defence M&S, the most critical factor is the acquisition of input data. The model user is hard to determine the input data such as the probability of hit(Ph) and the probability of kill(Pk). These data can be obtained directly by live fire during the development test and the operational test. Therefore, this needs more time and resources to get the Ph and Pk. In this paper, we reviewed possible ways to obtain the Ph and Pk. We introduced several data producing methodologies. In particular, the error budget method was presented to convert the Ph(%) data of AWAM model to the error(mil) data of OneSAF model. Also, the conversion method which can get the adjusted results from the JMEM is introduced. The probability of a hit was calculated based on the error budget method in order to prove the usefulness of the given method. More accurate data were obtained when the error budget method and the projected area from the published photo were used simultaneously. The importance of the Ph calculation was demonstrated by sensitivity analysis of the Ph on combat effectiveness. This paper emphasizes the importance of determining the Ph data and improving the reliability of the M&S system though steady collection and analysis of the Ph data.

Automatic Identification of Road Sign in Mobile Mapping System (모바일매핑시스템을 이용한 도로표지판 자동 추출에 관한 연구)

  • Jeong, Jae-Seung;Jeong, Dong-Hoon;Kim, Byung-Guk;Sung, Jung-Gon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.221-224
    • /
    • 2007
  • MMS(Mobile Mapping System) generates a efficient image data for mapping and facility management. However, this image data of MMS has many difficulties in a practical use because of huge data volume. Therefore the important information likes road sign post must be extracted from huge MMS image data. In Korea, there is the HMS(Highway Management System) to manage a national road that acquire the line and condition of road from the MMS images. In the HMS each road sign information is manually inputted by the keyboard from moving MMS. This manually passive input way generate the error like inaccurate position, mistaking input in this research we developed the automatic road sign identifying technique using the image processing and the direct geo-referencing by GPS/INS data. This development brings not only good flexibility for field operations, also efficient data processing in HMS.

  • PDF

Automatic Generation of the Input Data for Rapid Prototyping from Unorganized Point Cloud Data (임의의 점 군 데이터로부터 쾌속조형을 위한 입력데이터의 자동생성)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.144-153
    • /
    • 2007
  • In order to generate the input data for rapid prototyping, a new approach which is based on the implicit surface interpolation method is presented. In the method a surface is reconstructed by creating smooth implicit surface from unorganized cloud of points through which the surface should pass. In the method an implicit surface is defined by the adaptive local shape functions including quadratic polynomial function, cubic polynomial function and RBF(Radial Basis Function). By the reconstruction of a surface, various types of error in raw STL file including degenerated triangles, undesirable holes with complex shapes and overlaps between triangles can be eliminated automatically. In order to get the slicing data for rapid prototyping an efficient intersection algorithm between implicit surface and plane is developed. For the direct usage for rapid prototyping, a robust transformation algorithm for the generation of complete STL data of solid type is also suggested.

Federated Architecture of Multiple Neural Networks : A Case Study on the Configuration Design of Midship Structure (다중 인공 신경망의 Federated Architecture와 그 응용-선박 중앙단면 형상 설계를 중심으로)

  • 이경호;연윤석
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.77-84
    • /
    • 1997
  • This paper is concerning the development of multiple neural networks system of problem domains where the complete input space can be decomposed into several different regions, and these are known prior to training neural networks. We will adopt oblique decision tree to represent the divided input space and sel ect an appropriate subnetworks, each of which is trained over a different region of input space. The overall architecture of multiple neural networks system, called the federated architecture, consists of a facilitator, normal subnetworks, and tile networks. The role of a facilitator is to choose the subnetwork that is suitable for the given input data using information obtained from decision tree. However, if input data is close enough to the boundaries of regions, there is a large possibility of selecting the invalid subnetwork due to the incorrect prediction of decision tree. When such a situation is encountered, the facilitator selects a tile network that is trained closely to the boundaries of partitioned input space, instead of a normal subnetwork. In this way, it is possible to reduce the large error of neural networks at zones close to borders of regions. The validation of our approach is examined and verified by applying the federated neural networks system to the configuration design of a midship structure.

  • PDF

Prediction of the Stress-Strain Curve of Materials under Uniaxial Compression by Using LSTM Recurrent Neural Network (LSTM 순환 신경망을 이용한 재료의 단축하중 하에서의 응력-변형률 곡선 예측 연구)

  • Byun, Hoon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.277-291
    • /
    • 2018
  • LSTM (Long Short-Term Memory) algorithm which is a kind of recurrent neural network was used to establish a model to predict the stress-strain curve of an material under uniaxial compression. The model was established from the stress-strain data from uniaxial compression tests of silica-gypsum specimens. After training the model, it can predict the behavior of the material up to the failure state by using an early stage of stress-strain curve whose stress is very low. Because the LSTM neural network predict a value by using the previous state of data and proceed forward step by step, a higher error was found at the prediction of higher stress state due to the accumulation of error. However, this model generally predict the stress-strain curve with high accuracy. The accuracy of both LSTM and tangential prediction models increased with increased length of input data, while a difference in performance between them decreased as the amount of input data increased. LSTM model showed relatively superior performance to the tangential prediction when only few input data was given, which enhanced the necessity for application of the model.

Incremental Regression based on a Sliding Window for Stream Data Prediction (스트림 데이타 예측을 위한 슬라이딩 윈도우 기반 점진적 회귀분석)

  • Kim, Sung-Hyun;Jin, Long;Ryu, Keun-Ho
    • Journal of KIISE:Databases
    • /
    • v.34 no.6
    • /
    • pp.483-492
    • /
    • 2007
  • Time series of conventional prediction techniques uses the model which is generated from the training step. This model is applied to new input data without any change. If this model is applied directly to stream data, the rate of prediction accuracy will be decreased. This paper proposes an stream data prediction technique using sliding window and regression. This technique considers the characteristic of time series which may be changed over time. It is composed of two steps. The first step executes a fractional process for applying input data to the regression model. The second step updates the model by using its information as new data. Additionally, the model is maintained by only recent data in a queue. This approach has the following two advantages. It maintains the minimum information of the model by using a matrix, so space complexity is reduced. Moreover, it prevents the increment of error rate by updating the model over time. Accuracy rate of the proposed method is measured by RME(Relative Mean Error) and RMSE(Root Mean Square Error). The results of stream data prediction experiment are performed by the proposed technique IMQR(Incremental Multiple Quadratic Regression) is more efficient than those of MLR(Multiple Linear Regression) and SVR(Support Vector Regression).

Application of ANFIS for Prediction of Daily Water Supply (상수도 1일 급수량 예측을 위한 ANFIS적용)

  • Rhee, Kyoung-Hoon;Kang, Il-Hwan;Moon, Byoung-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.3
    • /
    • pp.281-290
    • /
    • 2000
  • This study investigates the prediction of daily water supply, which is a necessary for the efficient management of water distribution system. ANFIS, namely artificial intelligence, is a neural network into which fuzzy information is inputted and then processed. In this study, daily water supply was predicted through an application of network-based fuzzy inference system(ANFIS) for daily water supply prediction. This study was investigated methods for predicting water supply based on data about the amount of water which supplied in Kwangju city. For variables choice, four analyses of input data were conducted: correlation analysis, autocorrelation analysis, partial autocorrelation analysis, and cross-correlation analysis. Input variables were (a) the amount of water supply, (b) the mean temperature, and (c) the population of the area supplied with water. Variables were combined in an integrated model. Data of the amount of daily water supply only was modelled and its validity was verified in the case that the meteorological office of weather forecast is not always reliable. Proposed models include accidental cases such as a suspension of water supply. The maximum error rate between the estimation of the model and the actual measurement was 18.46% and the average error was lower than 2.36%. The model is expected to be a real-time estimation of the operational control of water works and water/drain pipes.

  • PDF

A study on the prediction of injection pressure and weight of injection-molded product using Artificial Neural Network (Artificial Neural Network를 이용한 사출압력과 사출성형품의 무게 예측에 대한 연구)

  • Yang, Dong-Cheol;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.53-58
    • /
    • 2019
  • This paper presents Artificial Neural Network(ANN) method to predict maximum injection pressure of injection molding machine and weights of injection molding products. 5 hidden layers with 10 neurons is used in the ANN. The ANN was conducted with 5 Input parameters and 2 response data. The input parameters, i.e., melt temperature, mold temperature, fill time, packing pressure, and packing time were selected. The combination of the orthogonal array L27 data set and 23 randomly generated data set were applied in order to train and test for ANN. According to the experimental result, error of the ANN for weights was $0.49{\pm}0.23%$. In case of maximum injection pressure, error of the ANN was $1.40{\pm}1.19%$. This value showed that ANN can be successfully predict the injection pressure and the weights of injection molding products.