• Title/Summary/Keyword: Data display

Search Result 2,245, Processing Time 0.04 seconds

Data Line Sharing in TFT-LCD with the Integrated Gate Driver

  • Park, Kwon-Shik;Cho, Nam-Wook;Chun, Min-Doo;Moon, Tae-Woong;Jang, Yong-Ho;Kim, Hea-Yeol;Kim, Binn;Choi, Seung-Chan;Cho, Hyung-Nyuck;Ryoo, Chang-Il;Yoon, Soo-Young;Kim, Chang-Dong;Kang, In-Byeong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1009-1012
    • /
    • 2008
  • We have succeeded in producing the world $1^{st}$ TFT LCD panel adapting the data line sharing method. In the data line sharing structure, two neighboring pixels share one data line. We also adapted time shared data driving with a-Si TFT based circuit integration technology of LG Display's own. By using these technologies, we can reduce the number of source driver ICs by half, compared to that of the existing gate driver integrated TFT LCD panel.

  • PDF

A Novel Data Transmit Method Using Display Units of Mobile Devices (모바일 단말기의 디스플레이 장치를 이용한 새로운 데이터 전송방법)

  • Shin, Ho-Chul;Cho, Kyu-Min;Oh, Won-Seok;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.193-195
    • /
    • 2004
  • This paper presents a novel data transmit method using display units of mobile devices. Mobile devices such as personal-digital-assistants (PDAs) and cellular phones have a display unit. The typical display unit is a liquid-crystal-display (LCD) with an back-light. Since the proposed data transmit method uses the LCD or back-light as a data transmitter, it is a kind of sightable light communication. Tn order to transmit the data, the display unit drived by an application program on the platform of mobile devices. In this paper, detailed data transmit scheme, specific data protocol are presented and discussed. Finally, with the experimental results, usefulness of the proposed data transmit method is verified.

  • PDF

3D DISPLAY OF SPACECRAFT DYNAMICS USING REAL TELEMETRY

  • Lee, Sang-Uk;Cho, Sung-Ki;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.403-408
    • /
    • 2002
  • 3D display of spacecraft motion by using telemetry data received from satellite in real-time is described. Telemetry data are converted to the appropriate form for 3-D display by the real-time preprocessor. Stored playback telemetry data also can be processed for the display. 3D display of spacecraft motion by using real telemetry data provides intuitive comprehension of spacecraft dynamics.

A Method of Reducing EMI in LCD Timing Controller using Efficient Data Compression and Data Transition

  • Kim, Min-Kyu;Lee, Song-Jae;Kim, Chang-Gone;Kang, Sin-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1499-1502
    • /
    • 2008
  • This paper proposes an efficient data compression for the conventional method of reducing EMI in a 10 bit LCD timing controller (TCON). In addition, we develop a new method to reduce EMI in a LCD TCON through repeated data on adjacent blocks. The novel technique reduced EMI by 10 dB for a 52" FHD 10it LCD TV.

  • PDF

14.1" XGA AMLCD with Integrated Black Data Insertion as an application of a-Si TFT Gate Driver

  • Choi, Woo-Seok;Kim, Hae-Yeol;Cho, Hyung-Nyuck;Ryu, Chang-Il;Yoon, Soo-Young;Jang, Yong-Ho;Park, Kwon-Shik;Kim, Binn;Choi, Seung-Chan;Cho, Nam-Wook;Moon, Tae-Woong;Kim, Chang-Dong;Kang, In-Byeong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.583-586
    • /
    • 2009
  • A 14.1" XGA (1024${\times}$768) LCD panel with Integrated Black Data Insertion (IBDI) has been world first developed successfully based on the integrated amorphous Silicon TFT gate driver which we previously introduced. The notable features compared with the conventional integrated a-Si TFT gate driver circuit are that the circuit consists of Dual buffer, Carry buffer structure, and Q-node cross charging for stable signal scanning characteristic and prevention of coupling between signal lines.

  • PDF

Three Dimensional Architecture of Multiplexing Data Registration Integrated Circuit for Flat Panel Display

  • Tseng, Fan-Gang;Liou, Jian-Chiun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1293-1296
    • /
    • 2008
  • As Flat Panel Display become large in format, the data and gate lines turn into longer, parasitic capacitance and resistance increase, and the display signal is delayed. Three dimensional architecture of multiplexing data registration integrated circuit method is used that divides the data line into several blocks and provides the advantages of high accuracy, rapid selection, and reasonable switching speed.

  • PDF

AI/BIG DATA-based Smart Factory Technology Status Analysis for Effective Display Manufacturing (효과적인 디스플레이 제조를 위한 AI/BIG DATA 기반 스마트 팩토리 기술 현황 분석)

  • Jung, Sukwon;Lim, Huhnkuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.471-477
    • /
    • 2021
  • In the field of display, a smart factory means more efficient display manufacturing using AI/BIG DATA technology not only for job automation, but also for existing process management, moving facilities, process abnormalities, and defect classification. In the past, when defects appeared in the display manufacturing process, the classification of defects and coping with process abnormalities were different, a lot of time was consumed for this. However, in the field of display manufacturing, advanced process equipment must be used, and it can be said that the competitiveness of the display manufacturing industry is to quickly identify the cause of defects and increase the yield. In this paper, we will summarize the cases in which smart factory AI/BIG DATA technology is applied to domestic display manufacturing, and analyze what advantages can be derived compared to existing methods. This information can be used as prior knowledge for improved smart factory development in the field of display manufacturing using AI/BIG DATA.

Optimization of the Data Line Sharing Panel Design for the High Resolution and Large Size LCD

  • Lee, Do-Young;Ji, Ju-Hyun;Koo, Hoe-Woo;Yoo, Ki-Taek;Cho, Suk-Ho;Song, Jae-Hun;Yoo, Sung-Rok;Kim, Jae-Sang;Park, Cheol-Woo;Park, Jae-Hong;Lee, Kyung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1247-1249
    • /
    • 2009
  • We have successfully developed the 22 inch WSXGA+ DLS(Data Line Sharing) Panel driving in 75 Hz. In the large size and high resolution panels, it is very difficult to design the DLS Panels without failure because of the very short charging time and the large signal delay. So, we first investigated the charging order to find the most adequate charging type to the large size and high resolution panels. And then, we optimized the design of DLS in terms of improving the charging properties using the technologies of the Delta-doping TFTs, Cu metal electrodes and optimization of panel design value and the circuit signal timing.

  • PDF

Tactile Transfer and Display Method using Data Glove and Vibration Motors Module (데이터 글로브와 진동모터를 이용한 촉각전달 및 제시 방법)

  • Kang, Hyung-Gu;Choi, Youngjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1138-1144
    • /
    • 2013
  • This paper proposes a tactile transfer and display method between a data glove and vibration motors module. The data glove is developed to capture the hand postures and to measure the grip forces. The measured data are simplified with the proposed 5-bit transfer and display algorithm, and the vibration motors module is developed to display the measured hand posture and grip force to the operator. The proposed 5-bit algorithm contains both an 8-step hand posture and 4-step grip force level information for tactile transfer to the vibration motors module. Also, the effectiveness of the proposed method is shown through several experiments.

A Novel Driving Method for Cost Competitive a-Si TFT-LCD

  • Moon, Su-Hwan;Lim, Hong-Youl;Kim, Dae-Kyu;Lee, Min-Kyung;Ko, Kyung-Tai;Lee, Jun-Ho;Yoon, Sung-Hoe;Kim, Byeong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.470-473
    • /
    • 2009
  • We have developed a novel driving method, Six times Rate Driving(SRD) for the purpose of making cost competitive TFT-LCD. By applying SRD method to an a-Si TFT-LCD, the driving rate was increased six times as it was named but the number of data lines and so its D-Ics were reduced to one sixth of the conventional one which resulted in the cost saving of that much. We also newly designed the gate driver in order to avoid any expansion of the bezel width caused by applying SRD. Our newly developed driving technology, SRD was successfully applied to 7.0-inch WSVGA (1024 ${\times}$ 600) TFT-LCD which can be driven with only one data D-IC and here introduced.

  • PDF