카메라나 레이더에 비해 높은 인지 성능을 제공하는 라이다 센서는 높은 가격으로 의해 ADAS나 자율주행에 적용되기 어려웠으나, 최근 가격이 빠르게 낮아지고 있어 라이다를 활용한 기존 자율주행 기능 개선에 관한 기대가 높아지고 있다. 레벨3 자율주행자동차의 경우, 센서의 결함 또는 한계 등 인지시스템에 위험한 상황이 발생했을 때 운전자에게 수동모드로의 제어권 전환을 요청하며, 만약 이러한 요청에도 운전자가 반응하지 않을 경우 MRM 즉 최소위험기동을 구현하여야 한다. 본 연구에서는 이러한 배경을 바탕으로 인지 시스템에서 생기는 위험으로 인해 LKS의 정상작동이 힘든 경우에 대한, 라이다 기반의 MRM 알고리즘을 개발하였다. 본 논문의 LKS MRM 기술은 라이다에서 수집된 포인트 클라우드 데이터를 기반으로 객체 군집화를 통해 전방에 있는 차량의 이동 경로를 생성하고, 이를 자차량의 목표 경로점으로 변환하여, 카메라 기반의 LKS가 정상 작동을 할 수 없는 경우 라이다 기반의 경로 추종제어를 통해 최소위험기동을 수행한다. 제안된 알고리즘의 성능을 검증하기 위하여 HAZOP 기법을 사용하여 위험원을 식별하였고 이를 바탕으로 검증용 시나리오 3가지를 도출하여, 뵨 연구에서 구축한 시뮬레이션 환경에서 알고리즘 검증을 수행하였다. 그 결과 본 연구에서 제안한 라이다 기반 LKS MRM 알고리즘이 여러 가능한 인지시스템의 위험 상황에 대해 차선이탈을 방지하고 이를 통해 교통사고를 방지하는 것을 확인할 수 있었다.
무선 센서 네트워크는 재사용이 불가능한 배터리와 제한된 처리능력, 저장 공간을 갖는 다량의 소형 노드로 이루어진다. 이 네트워크에서 노드들은 광범위한 영역에 배치되게 되며 이 노드들은 또한 무선 링크를 통해 노드들 사이에 단거리 통신을 수행한다. 네트워크의 에너지 효율을 위해 동적 클러스터링 기법이 네트워크 수명, 확장, 부하 분산에 효과적인 수단이다. 이 기법은 다수의 노드에 의해 수집되는 데이터가 클러스터 헤드 노드에 의해 집성되어 재전송되는 특징이 있어 해당 노드가 공격자에 노출될 경우 네트워크의 안전을 보장할 수 없게 된다. 그러므로 이러한 클러스터링 기법의 안전한 통신을 위해 노드들 사이에 전송되는 메시지의 암호화와 클러스터 헤드 노드의 보안 유지가 중요하다. 특히, 에너지 효율을 목적으로 설계된 클러스터 기반 프로토콜에서 충분한 데이터 안정성을 보장하기 위해서는 클러스터 구조에 적합한 키 관리 및 인증 기법이 필요하다. 이에 본 논문에서는 계층 클러스터 구조를 갖는 센서 네트워크에 적합한 키 관리 기법을 제안한다. 제안하는 기법은 다항식 키 풀 기반 기법에 기초하며 키 인증 절차를 통해 안정된 네트워크를 유지한다.
본 연구에서는 정보학적 접근을 통해 디지털 전환을 다룬 국내 패션 관련 연구동향과 지식구조를 밝히는 것을 목적으로 하였다. 국내 학술연구에서 나타난 관련 연구의 연도별, 학술지별 현황을 파악하고, 네트워크 분석을 통해 주요 연구 주제어를 도출하며, 시기별 주요 연구 동향과 지식 구조를 분석했다. 2010년부터 2020년까지 국내 학술 플랫폼에 게재된 159편의 연구를 수집했고, Python 3.7을 통해 데이터를 정제했으며, NodeXL 1.0.1을 통해 중심성 측정 및 네트워크 구현을 진행했다. 분석 결과 관련 연구는 2016년을 기점으로 활발하게 진행되었으며, 주로 의류학, 예술학 학술지에 밀집된 것으로 나타났다. 온라인 플랫폼, AR/VR이 가장 많이 언급되는 주제어로 나타났으며, 소비자 심리분석, 마케팅 전략 제시, 사례 분석이 주요 연구 방법으로 사용되고 있었다. 군집화를 통해 의류학의 세부 분과별 주요 연구 내용을 도출할 수 있었다. 시기별 주요 주제 분석 결과, 시간이 지남에 따라 소비자 중심의 연구에서 플랫폼이나 서비스에 대한 전략 제시 또는 디자인 개발 연구로 보다 다양하게 변화하고 있었다. 본 연구는 디지털 전환에 대한 패션 분야의 통찰력을 높이는데 기여하고, 관련 주제의 연구를 설계하는데 기초연구로 사용될 수 있을 것이다.
지적구조 분석을 위해 가중 네트워크를 시각화해야 하는 경우에 패스파인더 네트워크와 같은 링크 삭감 알고리즘이 널리 사용되고 있다. 이 연구에서는 네트워크 시각화를 위한 링크 삭감 알고리즘의 적합도를 측정하기 위한 지표로 NetRSQ를 제안하였다. NetRSQ는 개체간 연관성 데이터와 생성된 네트워크에서의 경로 길이 사이의 순위 상관도에 기반하여 네트워크의 적합도를 측정한다. NetRSQ의 타당성을 확인하기 위해서 몇 가지 네트워크 생성 방식에 대해 정성적으로 평가를 했었던 선행 연구의 데이터를 대상으로 시험적으로 NetRSQ를 측정해보았다. 그 결과 품질이 좋게 평가된 네트워크일수록 NetRSQ가 높게 측정됨을 확인하였다. 40가지 계량서지적 데이터에 대해서 4가지 링크 삭감 알고리즘을 적용한 결과에 대해서 NetRSQ로 품질을 측정하는 실험을 수행한 결과, 특정 알고리즘의 네트워크 표현 결과가 항상 좋은 품질을 보이는 것은 아니며, 반대로 항상 나쁜 품질을 보이는 것도 아님을 알 수 있었다. 따라서 이 연구에서 제안한 NetRSQ는 생성된 계량서지적 네트워크의 품질을 측정하여 최적의 기법을 선택하는 근거로 활용될 수 있을 것이다.
본 논문은 1920년 ~ 현재까지 예산연극의 변천과정 연구를 통해 연극의 가치를 확립하고 전파하며 지역의 고유한 연극성을 통해 대안을 제시하고 활성화에 목적을 둔다. 현재 중추적으로 활동하는 극단 예촌, 충남연극청소년연극제를 구분하여 기록하였으며 예산 유일의 예당국제공연예술제를 중심으로 연구하였다. 자료 유실로 한 공연 내용들은 가급적 적시하지 않고 1990년 이전 예산연극의 활동내용은 예산군, 읍, 면지를 활용하여 고증을 하였다. 또한 예산연극의 발전적 방향으로 연극의 다양성 부재에서 출발한다. 아동극이 단순한 상업목적으로 치부되거나, 한국의 전통연희극의 가치가 서양연극과 비교되는 현실에서 지역이 갖고 있는 자연적 특성과 전통문화 근간을 통해 지역 연극 발전을 촉진하고 레퍼토리 개발을 통해 극단의 경제성과 공연의 연속성을 지속해야한다. 또한 인프라(infrastructure) 구축을 꼽을 수 있다. 전문화된 배우의 유입과 예술행정가의 활용은 안정적 연극 환경을 조성하고 지역연극인들의 재교육을 활성화하여 연극적 상상력을 촉진시킨다. 또한 극단 예촌의 해외공연 사업에 젊은 예술가들의 실험적 연극방식을 도입하여 새로운 연극형식을 개발하는 것도 시급한 해결 과제이다. 또한 예당국제공연예술제를 특성화하여 다른 축제와의 차별성을 가져야 할 것이다.
음성 어시스턴트가 차량에 탑재되기 시작하면서, 차량의 조형적 특징과 음성 어시스턴트간의 연관성이 중요해지고 있다. 본 연구는 자동차에 적용된 음성 어시스턴트와 외관의 조화스러움에 대하여 공통된 감성적 특징을 기반으로 살펴보고자 하였다. 12가지 차량 이미지와 6가지의 음성 어시스턴트에 대해 15종의 형용사를 바탕으로 감성 평가를 실시하였다. 실험은 온라인 개별 인터뷰로 진행되었으며, 총 24명의 대학생이 참여하였다. 참여자들은 각 자극물을 대표하는 감성 형용사 3종을 1, 2, 3위로 평가하고, 선정 이유에 대한 간단한 인터뷰를 진행하였다. 설문 결과에 대해 주성분분석을 수행하여 2개의 주요 요인을 추출한 뒤, 각 요인을 축으로 하여 자극물을 분포시켰다. 분포도를 바탕으로 감성적 특징을 도출하고자 계층적 군집 분석을 수행하였다. 주성분 분석 결과 자동차 이미지와 음성 어시스턴트를 설명하는 감성적 차원으로 "편안한-급진적인"과 "가벼운-무거운"이 추출되었다. 두 차원을 바탕으로 자극물들을 분포시킨 결과, 자동차와 음성 어시스턴트가 동일한 축을 바탕으로 다양하게 분포해 두 요인이 자극물간 감성적 특징을 도출하기에 적합하다고 판단되었다. 자극물들의 분포도를 바탕으로 계층적 군집분석을 수행하여 17개의 자극물을 4가지 군집으로 추렸다. 각 군집은 도전적인, 우아한, 위엄있는, 활기찬 그룹으로 도출되었다. 본 연구에서는 차량의 조형적 특징과 음성 어시스턴트의 감성적 이미지를 동시에 설명할 수 있는 두 축을 도출하였다. 도출된 축을 바탕으로 그려진 분포도에 군집 분석을 수행해 감성적 특징을 분류하였으며, 총 4개의 감성적 특징이 도출되었다. 본 연구는 자동차의 조형적 특징에 맞춘 음성 어시스턴트 제안을 위한 디자인 품평 가이드로 활용되어, 추후 출시되는 차량에서 사용자들의 자동차 음성 어시스턴트 감성 경험이 증진될 것으로 기대한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권7호
/
pp.1951-1975
/
2023
Recent advances in Cognitive Radio Networks (CRN) have elevated them to the status of a critical instrument for overcoming spectrum limits and achieving severe future wireless communication requirements. Collaborative spectrum sensing is presented for efficient channel selection because spectrum sensing is an essential part of CRNs. This study presents an innovative cooperative spectrum sensing (CSS) model that is built on the Firefly Algorithm (FA), as well as machine learning artificial neural networks (ANN). This system makes use of user grouping strategies to improve detection performance dramatically while lowering collaboration costs. Cooperative sensing wasn't used until after cognitive radio users had been correctly identified using energy data samples and an ANN model. Cooperative sensing strategies produce a user base that is either secure, requires less effort, or is faultless. The suggested method's purpose is to choose the best transmission channel. Clustering is utilized by the suggested ANN-FA model to reduce spectrum sensing inaccuracy. The transmission channel that has the highest weight is chosen by employing the method that has been provided for computing channel weight. The proposed ANN-FA model computes channel weight based on three sets of input parameters: PU utilization, CR count, and channel capacity. Using an improved evolutionary algorithm, the key principles of the ANN-FA scheme are optimized to boost the overall efficiency of the CRN channel selection technique. This study proposes the Artificial Neural Network with Firefly Algorithm (ANN-FA) for cognitive radio networks to overcome the obstacles. This proposed work focuses primarily on sensing the optimal secondary user channel and reducing the spectrum handoff delay in wireless networks. Several benchmark functions are utilized We analyze the efficacy of this innovative strategy by evaluating its performance. The performance of ANN-FA is 22.72 percent more robust and effective than that of the other metaheuristic algorithm, according to experimental findings. The proposed ANN-FA model is simulated using the NS2 simulator, The results are evaluated in terms of average interference ratio, spectrum opportunity utilization, three metrics are measured: packet delivery ratio (PDR), end-to-end delay, and end-to-average throughput for a variety of different CRs found in the network.
경제발전과 국민소득 증가로 자동차 수는 계속 증가하고 있으며 이는 한정된 도로 여건과 주차 시설 부족으로 불법주정차 문제가 심각한 상황이다. 불법주정차는 사람들에게 많은 불편과 불쾌감을 주며, 또한 사고로 인한 인명 피해로까지 이어지게 한다. 수도권을 중심으로 늘어나는 차량과 불법주정차로 인해 관련 사고 및 그 피해의 심각성은 날로 커지고 있다. 이는 사회문제 발생의 원인이 되면서 불법주정차를 줄이기 위한 대책 마련에 힘쓰고 있다. 특히, 국내에서는 수도권에 거주하는 사람들의 민원 절반이 불법주정차 문제이고, 이로 인한 물리적 피해와 인명 피해가 가장 많은 곳은 경기도이다. 그리하여, 본 연구에서는 경기도 수원시의 불법주정차 관련 데이터를 기반으로 머신러닝 기법을 이용하여 지역 특성을 새롭게 분류하고, 이를 기반으로 효과적인 불법주정차 단속 방안을 제안한다. 더불어, 수도권 지역의 불법주정차 문제를 감소하기 위한 실무적·사회적·정책 및 법률적 방안을 제시한다. 본 연구는 사회문제 중 하나로 언급되고 있는 도시의 교통체증을 증가시키는 불법주정차 문제에 머신러닝 알고리즘인 K-prototype을 이용하여 지역 특성을 새롭게 분류한 것에 학술적 의의가 있다. 또한, 본 연구의 결과는 수도권 지역의 불법주정차 문제를 감소하기 위한 방안을 제시함으로써 실무적 및 사회적 측면에 기여한다.
Da Hyun Lee;Ji Eun Park;NakYoung Kim;Seo Young Park;Young-Hoon Kim;Young Hyun Cho;Jeong Hoon Kim;Ho Sung Kim
Korean Journal of Radiology
/
제24권3호
/
pp.235-246
/
2023
Objective: It is difficult to predict the treatment response of tissue after stereotactic radiosurgery (SRS) because radiation necrosis (RN) and tumor recurrence can coexist. Our study aimed to predict tumor recurrence, including the recurrence site, after SRS of brain metastasis by performing a longitudinal tumor habitat analysis. Materials and Methods: Two consecutive multiparametric MRI examinations were performed for 83 adults (mean age, 59.0 years; range, 27-82 years; 44 male and 39 female) with 103 SRS-treated brain metastases. Tumor habitats based on contrast-enhanced T1- and T2-weighted images (structural habitats) and those based on the apparent diffusion coefficient (ADC) and cerebral blood volume (CBV) images (physiological habitats) were defined using k-means voxel-wise clustering. The reference standard was based on the pathology or Response Assessment in Neuro-Oncologycriteria for brain metastases (RANO-BM). The association between parameters of single-time or longitudinal tumor habitat and the time to recurrence and the site of recurrence were evaluated using the Cox proportional hazards regression analysis and Dice similarity coefficient, respectively. Results: The mean interval between the two MRI examinations was 99 days. The longitudinal analysis showed that an increase in the hypovascular cellular habitat (low ADC and low CBV) was associated with the risk of recurrence (hazard ratio [HR], 2.68; 95% confidence interval [CI], 1.46-4.91; P = 0.001). During the single-time analysis, a solid low-enhancing habitat (low T2 and low contrast-enhanced T1 signal) was associated with the risk of recurrence (HR, 1.54; 95% CI, 1.01-2.35; P = 0.045). A hypovascular cellular habitat was indicative of the future recurrence site (Dice similarity coefficient = 0.423). Conclusion: After SRS of brain metastases, an increased hypovascular cellular habitat observed using a longitudinal MRI analysis was associated with the risk of recurrence (i.e., treatment resistance) and was indicative of recurrence site. A tumor habitat analysis may help guide future treatments for patients with brain metastases.
IT프로젝트 관리에 가장 중요한 요소 중 하나는 위험 관리이다. IT프로젝트 수행 중 발생할 수 있는 위험을 예측하고 대처하는 것이 프로젝트 성공 여부를 결정짓는 중요한 요소로 작용하기에, IT프로젝트 위험 요인은 학계와 업계에서 꾸준히 주목을 받는 주제이다. 이에 연구자들은 우선순위를 포함한 위험 요인 체크리스트 도출, 위험 요인들의 원인 관계 분석 및 프로젝트에 미치는 영향도 도출 등의 연구를 수행하였다. 그러나 위험 요인의 발생 확률과 영향도를 동시에 고려하는 위험 노출도의 관점에서 IT프로젝트 위험 요인을 체계적으로 분류한 연구는 미비하다. 본 연구는 문헌 연구 및 IT프로젝트 전문가 인터뷰를 바탕으로 IT프로젝트 위험 요인 53개를 도출하고, 도출된 위험 요인을 위험 노출도 관점에서 조사하였다. 나아가 프로젝트 관리자 140명의 설문을 통해 얻은 데이터로 군집분석을 실시해 4영역(HIHF, HILF, LIHF, LILF)으로 구분된 IT프로젝트 위험 요인 분류체계 프레임워크를 개발하였다. 또한 IT프로젝트를 프로젝트 성격 및 분야별로 위험 요인의 노출도 및 우선순위를 비교 분석하였다. 본 연구의 결과는 IT프로젝트 관리자들의 효율적 위험 관리 전략 수립을 돕고 IT프로젝트 실패를 줄이는데 활용될 수 있을 것이다. 또한 위험 요인의 발생 확률과 영향도를 동시에 고려했다는 측면에서 학문적인 의의를 가진다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.