• Title/Summary/Keyword: Data based PID control

Search Result 68, Processing Time 0.023 seconds

Optimal design of the PID Controller using a predictive control method

  • Kim, Sang-Joo;Lee, Jang-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.69-75
    • /
    • 2005
  • This paper is concerned with the design of a predictive PID controller, which has similar features to the model-based predictive controller. A PID type control structure is defined which includes prediction of the outputs and the recalculation of new set points using the future set point data. The optimal values of the PID gains are pre-calculated using the values of gains calculated from an unconstrained generalized predictive control algorithm. Simulation studies demonstrate the performance of the proposed controller and the results are compared with generalized predictive controller and the results are compared with generalized predictive control solutions.

PID algorithm-based Adaptive Bandwidth Control(ABC) System with Incoming Traffic in Home Gateway (홈 게이트웨이에서의 입력 트래픽에 관한 적응적 대역폭 제어 시스템)

  • Choi Dong-Hee;Kim Seong-Hoon;Park Hong-Seong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5B
    • /
    • pp.442-448
    • /
    • 2006
  • This paper considers a home gateway(HG) that processes VOD services and controls home appliances. This paper proposes a PID algorithm-based adaptive bandwidth control method used in the HG, which guarantees QoS of incoming traffic such as VOD and real-time control data via control of outgoing traffic and have little effects on the CPU computation time. The proposed method is validated via implementation of real test environment.

Neural Network PID Controller for Angle and Speed Control of Two Wheeled Inverted Pendulum Robot (이륜 역진자 로봇의 각도 및 속도 제어를 위한 신경회로망 PID 제어기)

  • Kim, Young-Doo;An, Tae-Hee;Jung, Gun-Oo;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1871-1880
    • /
    • 2011
  • In this paper, a controller for two wheeled inverted pendulum robot, i.e., Segway type robot that is a convenient and easily handled vehicle is designed to have more stable balancing and faster velocity control compared to the conventional method. First, a widely used PID control structure is applied to the two wheeled inverted pendulum robot and proper PID control gains for some specified weights of users are obtained to get accurate balancing and velocity control by use of experimental trial-and-error method. Next, neural network is employed to generate appropriate PID control gains for arbitrarily selected weight. Here the PID gains based on the trial-and-error method are used as training data. Simulation study has been carried out to find that the performance of the designed controller using the neural network is more excellent than the conventional PID controller in terms of faster balancing and velocity control.

Development of Bent Glass Automatic Shaping System using PC-based Parallel Distributed Control Scheme (PC기반 병렬 분산제어방식을 이용한 곡면유리 자동성형기 개발)

  • 양근호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.40-45
    • /
    • 2004
  • This paper presents the parallel distributed control scheme for shaping of the bent glass. The designed system consists of a PC, a main controller and 11 servo-controllers, the precision motion controllers. Each elements are connected by using RS-232C and 8-bit data bus. In order to guarantee the stability and the control performance, we use a precision PID motion controller and a H-bridge on the servo-drivers. PC calculates position values of 11 DC motors by using the pre-determined curvature value and offers the user interface environment operator. The main controller provides the control instructions and parameter values to 11 servo-controllers by chip enable signal, simultaneously. Using the received commands and parameter values, the servo-controllers control the positions of the DC motors based on PID control scheme.

  • PDF

Design of a GA-Based Fuzzy PID Controller for Optical Disk Drive (유전알고리즘을 이용한 Optical Disk Drive의 퍼지 PID 제어기 설계)

  • 유종화;주영훈;박진배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.598-603
    • /
    • 2004
  • An optical head actuator of an optical disk drive consists of two servo mechanisms for the focusing and the tracking to acquire data from disk. As the rotational speed of the disk grows, the utilized lag-lead-lead compensator has known to be above its ability for precisely controlling the optical head actuator. To overcome the difficulty, this paper propose a new controller design method for optical head actuator based fuzzy proportional-integral-derivative (PID) control and the genetic algorithm(GA). It employs a two-stage control structure with a fuzzy PI and a fuzzy PD control and is optimized by the GA to yield the suboptimal fuzzy PID control performance. It is shown the feasibility of the proposed method through a numerical tracking actuator simulation.

Fuzzy PID Control of Warranty Claims Time Series (보증 클레임 시계열 데이터를 위한 퍼지 PID 제어)

  • Lee, Sang-Hyun;Lee, Sang-Joon;Moon, Kyung-Il;Cho, Sung-Eui
    • Journal of Information Technology Services
    • /
    • v.8 no.4
    • /
    • pp.175-185
    • /
    • 2009
  • Objectifying claims filed during the warranty period, analyzing the current circumstances and improving on the problem in question is an activity worth doing that could reduce the likelihood of claims to occur, cut down on the costs, and enhance the corporate image of the manufacturer. Existing analyses of claims are confronted with two problems. First, you can't precisely assess the risks of claims involved by means of the value of claims per 100 products alone. Second, even in a normal state, the existing approach fails to capture the probabilistic conflicts that escape the upper control limit of claims, thus leading to wrong control activities. To solve the first problem, this paper proposed that a time series detection concept where the claim rate is monitored based on the date when problems are processed and a hazard function for expression of the claim rate be utilized. For the second problem, this paper designed a model whereby to define a normal state by making use of PID (Proportion, Integral, Differential) and infer by way of a fuzzy concept. This paper confirmed the validity and applicability of the proposed approach by applying methods suggested in the actual past data of warranty claims of a large-scaled automotive firm, unlike hypothetical simulation data, in order to apply them directly in industrial job sites, as well as making theoretical suggestions for analysis of claims.

Robust Speed Control of an Autonomous Vehicle Using Disturbance Observer (외란 관측기를 이용한 모형 자율 주행 자동차의 강인 속도 제어)

  • Ko, Young-Jun;Kim, Young-Jun;Kim, Jung-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.339-345
    • /
    • 2016
  • This paper presents a robust speed control of an autonomous vehicle using a disturbance observer. For the purpose, the transfer function of speed dynamics of an autonomous vehicle is identified using step response data. Based on the identified transfer function, model based PID (Proportional-Integral-Derivative) control is designed. In order to design a robust control against load variations on the vehicle, a disturbance observer (DOB) based control is devised. The performance of the designed DOB based control is demonstrated by real experiments.

PID Control of Poly-butadiene Latex(PBL) Reactor Based on Closed-loop Identification and Genetic Algorithm

  • Kwon, Tae-In;Yeo, Yeong-Koo;Lee, Kwang Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2600-2605
    • /
    • 2003
  • The PBL (Poly-butadiene Latex) production process is a typical batch process. Changes of the reactor characteristics due to the accumulated scaling with the increase of batch cycles require adaptive tuning of the PID controller being used. In this work we propose a tuning method for PID controllers based on the closed-loop identification and the genetic algorithm (GA) and apply it to control the PBL process. An approximated process transfer function for the PBL reactor is obtained from the closed-loop data using a suitable closed-loop identification method. Tuning is performed by GA optimization in which the objective function is given by ITAE for the setpoint change. The proposed tuning method showed good control performance in actual operations.

  • PDF

Fractional Order Modeling and Control of Twin Rotor Aero Dynamical System using Nelder Mead Optimization

  • Ijaz, Salman;Hamayun, Mirza Tariq;Yan, Lin;Mumtaz, Muhammad Faisal
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1863-1871
    • /
    • 2016
  • This paper presents an application of fractional order controller for the control of multi input multi output twin rotor aerodynamic system. Dynamics of the considered system are highly nonlinear and there exists a significant cross-coupling between the horizontal and vertical axes (pitch & yaw). In this paper, a fractional order model of twin rotor aerodynamic system is identified using input output data from nonlinear system. Based upon identified fractional order model, a fractional order PID controller is designed to control the angular position of level bar of twin rotor aerodynamic system. The parameters of controller are tuned using Nelder-Mead optimization and compared with particle swarm optimization techniques. Simulation results on the nonlinear model show a significant improvement in the performance of fractional order PID controller as compared to a classical PID controller.

Position Tracking Control of Flexible Piezo-beam Considering Actuator Hysteresis (작동기 히스테리시스를 고려한 유연 피에조빔의 위치추적제어)

  • Nguyen, Phuong-Bac;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.129-137
    • /
    • 2010
  • This paper presents a position tracking control of a flexible beam using the piezoelectric actuator. This is achieved by implementing both feedforward hysteretic compensator of the actuator and PID feedback controller. The Preisach model is adopted to develop the feedforward hysteretic compensator. In the design of the compensator, estimated displacement of the piezoceramic actuator is used based on the limiting triangle database that results from collecting data of the main reversal curve and the first order ascending curves. Experimental implementation is conducted for position tracking control and performance comparison is made between a PID feedback controller without considering the effect of hysteresis, and a PID feedback controller integrated with the feedforward hysteretic compensator.