• Title/Summary/Keyword: Data Throughput

Search Result 1,378, Processing Time 0.032 seconds

Performance Analysis of Effective Load Control Procedure for WiBro System (무선 인터넷 서비스를 위한 WiBro시스템의 효율적인 부하 제어 절차 제안 및 성능분석)

  • Kim, So-Hyoung;Kim, Jeong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5A
    • /
    • pp.387-393
    • /
    • 2007
  • In this paper, we propose the load control procedure for WiBro system in order to keep the data traffic throughput maximum. The transmitter at a mobile terminal can estimate maximum available power for each user and then the maximum number of subchannels can be calculated considering the total available power. The data traffic throughput and the total throughput (the sum of signaling traffic and data traffic throughput) are considered. As the number of bandwidth requests per frame increases, the data traffic throughput can significantly decrease. Therefore, the load control procedure is indispensible to maintain the data throughput at the maximum level. So, we propose the load control procedure to prevent data traffic throughput from decreasing and evaluate the proposed procedure through the computer simulation under the multi-user environment. The maximum throughput can be maintained by applying the proposed procedure.

Performance Analysis of Transmit Diversity in Multiuser Data Networks With Fading Correlation

  • Zhang, Kai;Niu, Zhisheng
    • Journal of Communications and Networks
    • /
    • v.10 no.4
    • /
    • pp.444-450
    • /
    • 2008
  • This paper studies the performance of multiuser data networks with transmit diversity under correlated fading channels. Previous work shows that correlated fading reduces the link performance of multiple antenna systems, but how correlated fading affects the throughput of multiuser data networks is still unknown since the throughput depends not only on the link performance but also on the multiuser diversity. We derive the throughput of the multiuser data networks with various transmit diversity schemes under correlated fading channels. The impact of correlated fading on the throughput is investigated. Analytical and simulation results show that, although correlated fading is harmful for link performance, it increases the throughput of the multiuser data networks if the transmit scheme is appropriately selected.

The Effects of PRF and Slot Interval on the PPM-Based Ultra Wide-Band Systems (PPM-기반의 UWB 시스템에 대한 PRF와 슬롯 시간의 영향)

  • 김성준;임성빈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12C
    • /
    • pp.1192-1199
    • /
    • 2003
  • In this paper, we investigate the effect of pulse repetition frequency (PRF) and slot interval on the throughput performance of the ultra wide band (UWB) wireless communication system in multi-path channels, and based on these observations, a data throughput control using PRF and slot interval is proposed for maximizing the effective throughput. Recently, due to many desirable features of the UWB system, it has drawn much attention especially for short-range high-speed data transmission. The UWB system has two parameters to determine its data throughput; pulse repetition frequency and slot interval. In the multi-path channel with additive white Gaussian noise, the UWB system suffers from the inter-pulse interference (IPI) and noise, which result in degradation of system performance. The UWB system can vary the two parameters to maintain and/or improve the system performance. In this paper, we demonstrate the effects of the two parameters on the data throughput of the UWB system in various multi-path indoor channels through computer simulation, and show that the variable data rate approach designed based on the observations is superior to the fixed data rate one in terms of effective throughput performance.

Excess Power를 이용한 HSDPA throughput 개선

  • Kim, Tae-Hyun
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.107-111
    • /
    • 2008
  • 3GPP는 사용자의 다운링크 패킷 데이터 Throughput을 높이고,NodeB에 MAC계층을 위치시켜, 사용자의 스케줄링과 재전송을 담당하게 함으로써, 다운링크 패킷의 전송 지연을 감소시키는 HSDPA(High Speed Data Packet Access)기술을 Release 5에서 도입하였다. NodeB에 위치한 MAC-hs 스케줄러는 각각의 사용자에게 가용한 NodeB의 RF power와 code 자원을 제공하며, R99에서 사용했던 Power control을 이용하는 대신, AMC(Adaptive Modulation and Coding)기능을 제공하여 Radio conditions에 따라 전송되는 Data Format을 조정하여 채널환경이 좋은 사용자에게는 높은 data Throughput을 제공하며, 채널환경이 좋지 않은 사용자에게는 낮은 data throughput을 제공하고 있다. 본 고에서는 매 TTI에 스케줄링된 사용자에게 제공하고도, RF power 및 code 자원이 남아 있을 경우, 스케줄러는 남은 자원을 각각의 사용자에게 재 분배하여, 초기에 추정한 HSDPA Throughput보다 향상된 성능을 갖을 수 있음을 설명하였다.

  • PDF

Bidirectional Chain Replication for Higher Throughput Provision

  • Mostafa, Almetwally M.;Youssef, Ahmed E.;Aljarbua, Yazeed Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.668-685
    • /
    • 2019
  • Provision of higher throughput without sacrificing consistency guarantees in replication systems is a critical problem. In this paper, we propose a novel approach called Bidirectional Chain Replication (BCR) to improve throughput in traditional Chain Replication (CR) through better utilization of computing and communication resources of the chain. Unlike CR where the whole replicated data store is treated as a single unit, in BCR the replicated shared data at each server in the chain is split into two disjoint Logical Partitions ($LP_1$, $LP_2$). This forms two chains running concurrently on the same hardware in two opposite directions; the first chain ($CR_1$) exclusively manipulates data objects in $LP_1$, while the second chain ($CR_2$) exclusively manipulates data objects in $LP_2$, therefore, conflict is avoided and concurrency is guaranteed. The simultaneous employment of these two chains results in better utilization of hardware in the sense that the two chains can evenly share the workload, hence, throughput can be improved without sacrificing consistency. Experimental results showed an improvement of approximately 85% in throughput of BCR over CR.

Dynamic Prime Chunking Algorithm for Data Deduplication in Cloud Storage

  • Ellappan, Manogar;Abirami, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1342-1359
    • /
    • 2021
  • The data deduplication technique identifies the duplicates and minimizes the redundant storage data in the backup server. The chunk level deduplication plays a significant role in detecting the appropriate chunk boundaries, which solves the challenges such as minimum throughput and maximum chunk size variance in the data stream. To provide the solution, we propose a new chunking algorithm called Dynamic Prime Chunking (DPC). The main goal of DPC is to dynamically change the window size within the prime value based on the minimum and maximum chunk size. According to the result, DPC provides high throughput and avoid significant chunk variance in the deduplication system. The implementation and experimental evaluation have been performed on the multimedia and operating system datasets. DPC has been compared with existing algorithms such as Rabin, TTTD, MAXP, and AE. Chunk Count, Chunking time, throughput, processing time, Bytes Saved per Second (BSPS) and Deduplication Elimination Ratio (DER) are the performance metrics analyzed in our work. Based on the analysis of the results, it is found that throughput and BSPS have improved. Firstly, DPC quantitatively improves throughput performance by more than 21% than AE. Secondly, BSPS increases a maximum of 11% than the existing AE algorithm. Due to the above reason, our algorithm minimizes the total processing time and achieves higher deduplication efficiency compared with the existing Content Defined Chunking (CDC) algorithms.

Throughput Maximization for Cognitive Radio Users with Energy Constraints in an Underlay Paradigm

  • Vu, Van-Hiep;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.2
    • /
    • pp.79-84
    • /
    • 2017
  • In a cognitive radio network (CRN), cognitive radio users (CUs) should be powered by a small battery for their operations. The operations of the CU often include spectrum sensing and data transmission. The spectrum sensing process may help the CU avoid a collision with the primary user (PU) and may save the energy that is wasted in transmitting data when the PU is present. However, in a time-slotted manner, the sensing process consumes energy and reduces the time for transmitting data, which degrades the achieved throughput of the CRN. Subsequently, the sensing process does not always offer an advantage in regards to throughput to the CRN. In this paper, we propose a scheme to find an optimal policy (i.e., perform spectrum sensing before transmitting data or transmit data without the sensing process) for maximizing the achieved throughput of the CRN. In the proposed scheme, the data collection period is considered as the main factor effecting on the optimal policy. Simulation results show the advantages of the optimal policy.

Gains Achieved by Symbol-by-Symbol Rate Adaptation on Error-Constrained Data Throughput over Fading Channels

  • Lee, Daniel C.;Tsaur, Lih-Feng
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.213-218
    • /
    • 2007
  • Methods for symbol-by-symbol channel feedback and adaptation of symbol durations have been recently proposed. In this paper, we quantitatively analyze the gain in error-constrained data throughput due to such an extremely rapid adaptation of symbol durations to fast-time-varying channels. The results show that a symbol-by-symbol adaptation can achieve a throughput gain by orders of magnitude over a frame-by-frame adaptation.

An Analysis of Effective Throughput in Distributed Wireless Scheduling

  • Radwan, Amr
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.155-162
    • /
    • 2016
  • Several distributed scheduling policies have been proposed with the objective of attaining the maximum throughput region or a guaranteed fraction throughput region. These policies consider only the theoretical throughput and do not account the lost in throughput due to the time complexity of implementing an algorithm in practice. Therefore, we propose a novel concept called effective throughput to characterize the actual throughput by taking into account the time complexity. Effective throughput can be viewed as the actual transmitted data without including the control message overhead. Numerical results demonstrate that in practical scheduling, time complexity significantly affects throughput. The performance of throughput degrades when the time complexity is high.

Throughput of Coded DS CDMA/Unslotted ALOHA Networks with Variable Length Data Traffic and Two User Classes in Rayleigh Fading FSMC Model

  • Tseng, Shu-Ming;Chiang, Li-Hsin;Wang, Yung-Chung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4324-4342
    • /
    • 2014
  • Previous papers analyzed the throughput performance of the CDMA ALOHA system in Rayleigh fading channel, but they assume that the channel coefficient of Rayleigh fading was the same in the whole packet, which is not realistic. We recently proposed the finite-state Markov channel (FSMC) model to the throughput analysis of DS uncoded CDMA/unslotted ALOHA networks for fixed length data traffic in the mobile environment. We now propose the FSMC model to the throughput analysis of coded DS CDMA/unslotted ALOHA networks with variable length data traffic and one or two user classes in the mobile environment. The proposed DS CDMA/unslotted ALOHA wireless networks for two user classes with access control can maintain maximum throughput for the high priority user class under high message arrival per packet duration.