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Gains Achieved by Symbol-by-Symbol Rate Adaptation on
Error-Constrained Data Throughput over Fading
Channels

Daniel C. Lee and Lih-Feng Tsaur

Abstract: Methods for symbol-by-symbol channel feedback and
adaptation of symbol durations have been recently proposed. In
this paper, we quantitatively analyze the gain in error-constrained
data throughput due to such an extremely rapid adaptation of sym-
bol durations to fast-time-varying channels. The results show that
a symbol-by-symbol adaptation can achieve a throughput gain by
orders of magnitude over a frame-by-frame adaptation.

Index Terms: Fading, rate adaptation, throughput

I. INTRODUCTION

In this paper we compare the data rates of the two ideal adap-
tive systems that give the same symbol error probability (SEP).
Both adaptive systems adjust the symbol duration to the chan-
nel’s instantaneous gain (or attenuation). One system can rapidly
adjust every symbol’s duration, so is referred to as the symbol-
by-symbol (SBS) adaptive system. The other system can change
the symbol duration only at the beginning of each frame and
keeps constant the duration of the symbols transmitted in the
frame. This latter system is referred to as the frame-by-frame
(FBF) adaptive system. An example of the FBF rate adaptation
would be the UMTS-2000 WCDMA System, in which the trans-
mitter can change the spreading gain for every data frame of
10 ms in some channels. SBS adaptation was recently proposed
in the CDMA system in the form of spreading gain adaptation
[1]. Then, in [2] we proposed improved protocols and the en-
tire architecture for rapid channel status feedback that enable
the transmitter to rapidly adapt to the fast time-varying channel
condition by changing the spreading gain symbol-by-symbol.
A purpose of the present paper is to quantitatively estimate the
benefits that such a rapid adaptation can provide. The contribu-
tion of the present paper will be to show that the SBS adaptation
can improve by orders of magnitude the average data rate for a
given SEP requirement.

II. ANALYSIS

We first derive the symbol-by-symbol rate (symbol duration)
adaptation policy that maximizes the average symbol rate under
the constraint of the required symbol error probability, € (error-
constrained data throughput). Our analysis is conducted under
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conditions similar to those used in [3], where channel’s instan-
taneous conditions are assumed to be known by the system’s
transmitter and receiver. The transmitter decides the duration of
each symbol on the basis of the instantaneous channel condition,
and we assume that the receiver knows the symbol duration cho-
sen by the transmitter. Thus, the correct duration of each symbol
is used by the receiver to process the incoming signal and detect
the content of the symbol.

In this study, we apply the wide-sense stationary uncorre-
lated scattering channel model. We denote by a(t) a normalized
ergodic complex-valued random process that models complex,
base-band fading channel gain. We define this gain a(t) in such
a way that P |a(t)]® is the receive power at time ¢, where P
is the average receive power, i.e., a(t) is normalized such that

E [|a (t)|2] = 1. If we are given a transmission power Pr and

an unnormalized channel gain process a(t), then we can nor-

malize it as
a(t) = a(t) / E [la(t)]

where P = PrE [I&(t)ﬂ is the average receive power of the

signal.
Assuming that the receive power stays constant during the
symbol duration, the instantaneous signal to noise ratio per sym-

bolis P |a(t)]> T / Ny, where T is the symbol duration and Ny

is the spectral density of the additive noise power at the receiver.
We represent by the function r(|a|) of the normalized chan-
nel amplitude gain’s magnitude |a/, the rate adaptation policy.
The value r(]a|) represents the instantaneous symbol rate cho-
sen in accordance with the policy when the channel amplitude
gain is |a|. Applying policy r (Ja (t)|) to the symbol-by-symbol
adaptation of the symbol duration would be to use as the dura-
tion of the ith symbol 1/7 (la (¢;)|) (the reciprocal of the rate),
where t; is the beginning of the ¢th symbol interval. That is, the
channel gain at the beginning of each symbol interval is used as
the ‘representative’ channel gain for that symbol. This applica-
tion would coincide with policy r {|a (¢)|) under the assumption
that the channel gain stays constant during each symbol interval,
which is commonly assumed for such studies as this [3]. We will
often use set notation {r(a)|e > 0} to represent a rate adapta-
tion policy Policy {r(a)]a > 0} results in average throughput,
r(lal)] = [ r(@)fq) (@) do, where fi,denotes the proba-
b111ty density function (pdf) of the normalized channel ampli-
tude gain |a (¢)|. (We assume that the time-varying channel am-
plitude gain is a mean-ergodic process.) Thus, the maximum-
throughput policy is derived through the following maximiza-
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tion:
mac [ r(@)fu (@) da
r(@)h ( 3225) fia (@) da
subject to / (NO ( )) i H

Tr(@)fa (@da  =°
where the left-hand side of the inequality constraint is the aver-
age SEP, P is the average receive power, Ny is spectral density
of the additive noise power at the receiver, and function h(z) is
the SEP corresponding to the instantaneous signal-to-noise ra-
tio, x, per symbol. Different modulation schemes have different
SEP functions, h(-). We assume that h(-) is a monotonically
decreasing and convex function, which is valid for all useful
modulation schemes. Obviously, there is an implicit constraint,
r(a) > 0, Ya > 0 on policy {r(a)|a > 0}.

It is intuitive and can also be proven that the maximum policy
in criterion (1) satisfies the constraint with equality. Therefore,
the maximum-throughput policy can be derived through the fol-

lowing maximization:
[r@far(a)da

subject to /r (a)h (%) flal (@) dav

— [ 1(0)fi (@) da

We consider the Lagrangian associated with (2),
L{r(a)|a>0},X)
f f|a| a)da+ A

2

max
{r(a)}

e

Using convexity of h(-), we can prove that Lagrangian
L {{r (a)|a > 0}, ]) is concave in the space of feasible poli-
cies for each non-negative A. Therefore, for a given non-negative
Lagrange multiplier, a feasible policy {r(a)|a > 0} that satis-
fies

( ) do—
)flal( ) dox

Nor (o)

oL
Br(a) C))

maximizes Lagrangian L in (3). (All partial derivatives of a con-
cave function vanish.) From (3) we can derive, for each «,

ar(a) ({r(a@)]a>0},)
= flaj (@) +
NEORIC = IRICR
' 4]

( )h (Nor(a)) {6r(a) (Nor(a))}f|a| ( )
5f|a| (a) —h (]VOLT@) f|a| (Oé)
' (§fy) Wt Sl (@)
Therefore, (4) is equivalent to:

a2 ({r (@) la > 0}, A)

({r(@)|a>0},2) =0, Ya>0

&)

= fla(@)+A

= fla (@) + A 8f|«:l (c )2P (Nor(a ) fla| (@)
Y (Ferley) Wty et (@)
=0, Ya >0

or equivalently,

y+e=h (7%5%) - (Nj:]:m) N?:](Dar

1/A + € on the left-hand side of (6) is constant over o, s0 we
can observe that the policy {r{a)|a > 0}, to satisfy (6), must
be such that the right-hand side of (6) is constant over c. We
also note that policy {r (a) = ga? |a > 0}, for any value of g,
makes the right-hand side of (6) constant over «, as seen in the
following:

VYa >0

b o?P Y o’P o’P
Noga? Noga? ) Nogo?
P P P
—h W (_) Ll
(NOQ> Nog ) Nog

Thus, a policy in the form of {r (o) = go® |a > 0} (a policy
that keeps instantaneous symbol rate proportional to the power
gain of the channel), is of interest to us because in light of (6)
and (7), if we choose the value of ¢ such that

1 P P P
——I-E:h(—) — K <—> —, Ya>0, (8)
A Nog Nogq /) Nogq
then the policy {r(a) = ga® | @ > 0} maximizes L({r(c)|
a > 0}, A). Now, among the polices in the form of {r(a)=
ga?|a > 0} with some value of g, we consider the policy with
g = ¢* such that h (P/Nog*) = ¢, i.e.,
B P
~ Noh=(e)

¢

Ya >0

*

q ®

This policy {r*() = ¢*a? |a > 0} also satisfies the equality
constraint in (2), as seen in the following:

Q2P
[ (5t ) fa(@ia
P
= / 2h( >flal( )dex
_ 9 _
- fmm(9)/ Noh_l(s)a h (h‘
P
= /Wa2€ﬂa| (a) do
= ¢ [ r(a)fja (@) da
/ . r(a)=q*a?
Therefore, from (3) and (10) we have

L({r* (@) o > 0}, X) = / " (&) faf (@) da, YA, (11)

r(a)=g¢*a?

() fiaf (@) da

(10)

Now, we pick Lagrange multiplier

_ Nogt /., ( P .
(L)oo
and consider Lagrangian (3) for this multiplier A*:
L{r{a)]a>0},x%)
e [ (a)fjq) (@) da—
= a d A*
J (@) fia) (@) do + [IT(O‘)haNgr(a)flal( ) da }
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Note that A* > 0 because SEP function A(-) is monotonically
decreasing, so L ({r (a) | > 0}, A\*) is a concave function of
vector {7 () |a > 0}, which follows from convexity of i (-). As
in (5) we have

37‘ a) {T (Ol) lOé > O} )‘*)

= fla| (o) + A" &Jial (@) = (Nﬁf«fl;) fla) (@) +
a (Nir%) Nortay fla (@)

and thus

8r(a) ({’I‘(CM)|CM > 0} ) /\*)|{r(a)|a>0}:{T*(a)|a>0}

) [ efiu (@) = h (Noq 22 ) fial (@)
= flal (o) + A" +h/ (N(:;*I?ﬂ) Wflal (a)
B ) sf; (@) ~ h(Noq ) fial (@)
= f|a| ( ) + AT <N0pq*) o flal ( )

€fla) (@
+h! (

=temer ] 1(a)+/\*[ ( () fiy (@) }

)
Neg? ) Fog flal (@)
— (@)XW () e ()

Ztema fla] (@) = fla| (@)
— 0, Va>0.

Nog*

Because partlal derlvatlves 5 (a) ({r (@) | > 0}, A*) vanish at
vector {r*{a o?|a>0} and L({r(a)|o>0},N*) is
concave of vector Variable {r(c)|a > 0}, we can see that pol-
icy {r*(¢) = ¢*o? |a > 0 } maximizes Lagrangian

L{r(a)la>0},1")
= [r(a)fia (@) do + X*

e fr(a)fa (@) da—
Sr(a)h 6N—f°) fial (@) da }
That is,

L{{r"(a)|a>0},X")

> L{{r(a)]a>0},X*), vpolicy {r(a)|a >0} € m,
where 7, denotes the set of all policies. The set of poli(clizg

that satisfy the equality constraint (2) is a subset of 7, that is,
Tq D e, Where

Te = {{re ()| > 0} Jrela

=¢ [re (@) fial (
Thus, from (13) and the fact 7, O 7, we have
L({r* (a)]a>0},A%)

> L ({re (@) | > 0}, 2*), Vpolicy {r. (o) | > 0} € 7.
(14)

For an arbitrary policy {r. (&) | > 0} € 7., we have
L ({re (o) | > 0}, 2%)
:/ Te (@) flal (a)da + X* ':E/T'e (a)fia| (o) da—
2P

[retapn (N_ST«)) fat (@) da] = [re (@it (@ da

15)

. (Recall that

(Ni‘ffw) Fiat (@) dox } ,

The last equality is because {r.(c)|a > 0} satisfies the equality
constraint in (2):

’p

@ (5

) o (@) do =< [ 7. (@)1 (@) do

As mentioned before, policy {r* («) |o > 0} satisfies the in-
equality constraint in (2), so from (3) and (15) we have

L({r" (a)]|a>0},)")

— [ r@faeda+x o [ (@ u(a)da
2P

/ - [ e (i) daterce
= [ @ (@) da

Relations (14), (15), and (16) lead to

S () fla (@) dox
> [r% (@) fiq (@) do, V{r¢ () Ja >0} € 7.

(16)

amn

Relation (17) states that policy {r*(a) = g*a? |a > 0}, which
satisfies the equality constraint in (2), is a solution to maxi-
mization (2). In words, the optimal instantaneous symbol rate
is directly proportional to the channel’s power gain with slope
q*, where ¢* can be obtained from (9). The maximal average
throughput resulting from this policy is then

Fs = /T‘* (@) fla) () da:/q*azf\uq () dex

P

Elg la@®P] = ¢ = - T

gain a (t) by definition is normalized so that

Ella®)f] =1)

Now we consider the maximal average symbol rate for frame-
by-frame adaptation. Unlike symbol-by-symbol adaptation, the
symbol rate is fixed during each frame in the case of frame-by-
frame adaptation. The rate decision, r, for a frame will have an
associated error probability of symbols transmitted within that
frame. For the sake of simplicity, we assume that the adaptive
system is operating over channels highly fluctuating in time rel-
ative to the frame duration, that is, to such an extent that the
empirical distribution of the fading channel gain in each data
frame can be approximated by the ensemble distribution of the
channel gain. Under this assumption, each frame’s symbol error
probability associated with a particular symbol rate decision r
for that frame can be approximated by the symbol error proba-
bility for the entire time horizon when the symbol rate is fixed at
r at all times. (In other words, the frame-by-frame rate adapta-
tion to the channel gain in this case is not useful for adapting to
fading, although it can be useful for slower time-varying chan-
nel fluctuations such as shadowing or path loss due to distance.)
Therefore, the frame-by-frame adaptive system’s maximal av-
erage rate for a given SEP constraint can be approximated by
the maximal fixed (non-adaptive) rate for the same constraint.
In the fixed-symbol-rate system, the symbol duration is fixed all

(18)
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the time, so the problem of maximizing the error-constrained
throughput can be viewed as the constrained optimization prob-
lem obtained by adding an additional constraint r (@) = 7, Va
to problem (1), that is,

max r
r

. o?P
subject to /h (_No—r> fla) (@)da < e.

Therefore, the maximum throughput is obtained by finding the
maximum value of r, say 7, that satisfies

/h (0®P/NoTr) fiaf (@) da =e. (19)
In this paper, our main interest is the ratio R = 7s/7r, which

we call “throughput gain”. Now, we analyze this ratio. From (9)
and (18), we have

_ " 2] P 2] P
rs=E[rla)f] - Noh 1(e) la®r] - Noh~1(e)’
(20)
For analyzing 7, we define a function
@) = [ b0 € de 1)

where f,2 (§) is the probability density function of the nor-

malized power gain |a(t)|°. Then, from (19) and (21), we have
that 7 satisfies

o () oo ()

Because that A(-) is a monotonically decreasing, H(z) is also
monotonically decreasing with z, and thus we can define the
inverse function, H (), of H(-). From (22) we have

P

(22)

TEp — m (23)
Then, from (20) and (23), we have
e n _HTYE)
Rzrs/TF—m 24)

1. NUMERICAL STUDY OF IDEAL ADAPTATION

In this paper, our main interest is the ratio R = 7s /7, which
we call “throughput gain”. In this section, we numerically study
the ideal throughput gain (24) for different modulation schemes.
The numerical study was conducted for Rayleigh fading chan-
nels. Thus, the pdf of the normalized fading power gain |a (¢)]?
is

fla2 (§) =exp(=§), £>0. (25)

A. Example: Noncoherent binary FSK, Rayleigh

In a simple example of the noncoherent binary FSK (fre-
quency shift keying), we have bit error probability curve,

h(z) — %exp (-3) 26)

Noncoherent BFSK
T T

Throughput gain

SEP required

Fig. 1. R (throughput gain) vs. SEP requirement for BFSK.

so we have
h™l(e) = —21n(2¢) 27
H()—/m1 (—Z—) (- d=—— (@8
A= [ e jep-0di= )
) 1
H (s):g—-Q (29)
—1 _
R=rgfrp= O 122 (30)

h-1(e)  —2eln(2e)’
Fig. 1 plots throughput gain R against the required SEP, e.

B. Example: MPAM, Rayleigh

Consider the M -ary pulse amplitude modulation with M one-
dimensional signal points with value

3P

m=1,2--M (@31

for symbol duration 1/r. We note that the average power of this
symbol is

3P

M
T 2
L Y I
MmZZIQm N Ty

(32)

for this symbol, assuming that each of M symbols is equally
likely. For such MPAM, from [4] we have

(@) = 2021 ”Q( e 1)

where z is the average received signal to noise ratio per symbol.

Then,
1 ) eM 2
OO g (2]

(33)
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Fig. 2. R (throughput gain) vs. SEP requirement for MPAM.

where we denote by erfcinv the inverse function of er fc(y) =

2Q(v/2y). Also,

ML) (,/ J&) xp (~0)

- (M-1) v3z
= (from [5, 7.4.19]) M M m
M?-1) (M -1-Me)?
g1 . @35
() 3 Me{2(M—1)— Me) )
Therefore,
_ 2
RZE_H_I(S) _ (% o) 1
= Fm p-1 - M-1 _ . e 2
TF (5) g (2 W 6) [e’l"fCZnU (MJYI)}

Fig. 2 plots throughput gain R against the required SEP, e.
We note that the throughput gain curves are similar for 4PAM,
8PAM, 16PAM, and 32PAM.

C. Example: MOAM, M = 2%, even k, Rayleigh
The SEP of MQAM for M = 2F [4, p. 276] is

(Va7 -1) 52
h(z)=1—- 11— Werfc ( m) (36)
hi(e) = 2M 1) (M3_ D {erfcim) <\/MSM_ — 11 —°) )}

Also, from [6, 7] we have

h(z) = 4 (1 - W) /2

4 exp [—mx] de
(1 lM) fo exp [—mx]d&

(37

=||u>
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Fig. 3. R (throughput gain) vs. SEP requirement for MQAM.

From this, we derive

H(z)

/0 h(z€) exp (~€) de (38)

() /0:/2 /Tf)u‘”
(7w [ waea®

where c(z) = 3z/{2(M — 1)}. Now, [7, 5A.8, 5A.4a, 5A.13]
provides closed forms of the integrals in (38), and thus we have

)

1 3z
H<Z):2<1‘¢—M)(1‘ T M= D)
1 2
_(1‘71\7)
3z 4 2(M - 1)
[1— 4—3z+2(M 1)< arctan 1+—_3z )}

In order to compute H ~!(¢) numerically, we found the zero of
function H(z) — ¢ by using a zero-finding routine. Fig. 3 plots
throughput gain R against the required SEP, €. We note that the
throughput gain curves for M'=8, 16, 32, and 64 are almost iden-
tical.

(39

IV. CONCLUSIONS

Figs. 1-3 show numerical results of P for a few modulation
schemes for different values of the SEP (fidelity) requirement
€. It is noteworthy that Figs. 1-3 are all similar. Also, we have
numerically computed R = rg/7r values in the same range
of required SEPs for other modulation schemes, MPSK, DPSK,
NC-FSK, and MSK. The throughput gain curves for these mod-
ulations are very close to Figs. 1-3. Thus, we conclude that the
throughput ‘gains’ due to SBS adaptation for different modu-
lations are very close to one another, even though the error-
constrained throughput may differ from modulation to modu-
lation because of different SEP functions k (-). Thus, in a wide
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range of communication systems and SEP requirements, Figs.
1-3 indicate that SBS adaptation can achieve a throughput
gain by orders of magnitude. We also observe that the through-
put gain R is larger for the smaller &.

Appendix

The numerical study in section III provides good insights
into the potential benefit of the fast adaptation. However, the
SBS adaptation policy {r*(a) = ¢*a?|a > 0} is ideal in two
respects. First, the fading gain in the Rayleigh model is un-
bounded, so the instantaneous rate 7* () = g*a? is unbounded.
This is impractical because the symbol rate is bounded due to
a fixed and finite signal bandwidth. Also, 7*(a) = ¢*a? can
become arbitrary small because a? can be arbitrarily close to
zero, that is, the symbol duration 1/7*(«) can become arbitrar-
ily long. For practical purpose, the rate adaptation policy must
have additional constraint that the symbol durations must be in

a specific range, that is,

r < r*(a) <7y (40)

for some 7; and r,. Under this additional constraint, an opti-
mal policy {r(a)} can be numerically computed. However, for
simplicity of analysis and good insight, we now consider a sub-
optimal policy

0, a < a
rla) =¢ ¢, a<a<a, (41)
gtat, a>a,

which satisfies both constraint (1) and (40). Under this subopti-
mal policy, the average throughput of the SBS adaptation is

[ aehap ©de+ [ aathop ©e )

a?) —exp (—a2)].

From (23) and (42), the throughput ratio for this suboptimal pol-
icy is

P

= NohT() [al2 exp (—af) + exp (-

H—l

hT((ag)) [al2 exp (—a?) + exp (—alz) — exp (—ai)] .
For a} = 0.01 and a2 = 100, the factor a? exp (—a?) +
exp (—a}) — exp (—a2) ~ 1.0. For a? = 0.1 and a2 = 100,
we have

a? exp (—al2) + exp (—alz) —exp(—a ) = 0.9953.
For al2 =1.0and ai = 100, we have

a? exp (—a%) + exp (—alz) — exp ( ) = (.7358.

Therefore, in comparison with (24), for a reasonable range of
rate adaptability, we can conclude that the throughput ratio for
even suboptimal policy (41) yields a huge the throughput gain,
constdering the huge gains exhibited in Figs. 1-3. Therefore,
even with the constraint (40), SBS adaptation can achieve a
throughput gain by orders of magnitude.
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