• Title/Summary/Keyword: Data Security Control Model

Search Result 213, Processing Time 0.03 seconds

De-Centralized Information Flow Control for Cloud Virtual Machines with Blowfish Encryption Algorithm

  • Gurav, Yogesh B.;Patil, Bankat M.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.235-247
    • /
    • 2021
  • Today, the cloud computing has become a major demand of many organizations. The major reason behind this expansion is due to its cloud's sharing infrastructure with higher computing efficiency, lower cost and higher fle3xibility. But, still the security is being a hurdle that blocks the success of the cloud computing platform. Therefore, a novel Multi-tenant Decentralized Information Flow Control (MT-DIFC) model is introduced in this research work. The proposed system will encapsulate four types of entities: (1) The central authority (CA), (2) The encryption proxy (EP), (3) Cloud server CS and (4) Multi-tenant Cloud virtual machines. Our contribution resides within the encryption proxy (EP). Initially, the trust level of all the users within each of the cloud is computed using the proposed two-stage trust computational model, wherein the user is categorized bas primary and secondary users. The primary and secondary users vary based on the application and data owner's preference. Based on the computed trust level, the access privilege is provided to the cloud users. In EP, the cipher text information flow security strategy is implemented using the blowfish encryption model. For the data encryption as well as decryption, the key generation is the crucial as well as the challenging part. In this research work, a new optimal key generation is carried out within the blowfish encryption Algorithm. In the blowfish encryption Algorithm, both the data encryption as well as decryption is accomplishment using the newly proposed optimal key. The proposed optimal key has been selected using a new Self Improved Cat and Mouse Based Optimizer (SI-CMBO), which has been an advanced version of the standard Cat and Mouse Based Optimizer. The proposed model is validated in terms of encryption time, decryption time, KPA attacks as well.

A Trusted Sharing Model for Patient Records based on Permissioned Blockchain

  • Kim, Kyoung-jin;Hong, Seng-phil
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.75-84
    • /
    • 2017
  • As there has been growing interests in PHR-based personalized health management project, various institutions recently explore safe methods of recording personal medical and health information. In particular, innovative medical solution can be realized when medical researchers and medical service institutes can generally get access to patient data. As EMR data is extremely sensitive, there has been no progress in clinical information exchange. Moreover, patients cannot get access to their own health data and exchange it with researchers or service institutions. It can be operated in terms of technology, yet policy environment are affected by state laws as well as Privacy and Security Policy. Blockchain technology-independent, in transaction, and under test-is introduced in the medical industry in order to settle these problems. In other words, medical organizations can grant preliminary approval on patient information exchange by using the safely encrypted and distributed Blockchain ledger and can be managed independently and completely by individuals. More apparently, medical researchers can gain access to information, thereby contributing to the scientific advance in rare diseases or minor groups in the world. In this paper, we focused on how to manage personal medical information and its protective use and proposes medical treatment exchange system for patients based on a permissioned Blockchain network for the safe PHR operation. Trusted Model for Sharing Medical Data (TMSMD), that is proposed model, is based on exchanging information as patients rely on hospitals as well as among hospitals. And introduce medical treatment exchange system for patients based on a permissioned Blockchain network. This system is a model that encrypts and records patients' medical information by using this permissioned Blockchain and further enhances the security due to its restricted counterfeit. This provides service to share medical information uploaded on the permissioned Blockchain to approved users through role-based access control. In addition, this paper presents methods with smart contracts if medical institutions request patient information complying with domestic laws by using the distributed Blockchain ledger and eventually granting preliminary approval for sharing information. This service will provide an independent information transaction and the Blockchain technology under test will be adopted in the medical industry.

Database Security System for Information Protection in Network Environment

  • Jung, Myung-Jin;Lee, Chung-Yung;Bae, Sang-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.211-215
    • /
    • 2003
  • Network security should be first considered in a distributed computing environment with frequent information interchange through internet. Clear classification is needed for information users should protect and for information open outside. Basically proper encrypted database system should be constructed for information security, and security policy should be planned for each site. This paper describes access control, user authentication, and User Security and Encryption technology for the construction of database security system from network users. We propose model of network encrypted database security system for combining these elements through the analysis of operational and technological elements. Systematic combination of operational and technological elements with proposed model can construct encrypted database security system secured from unauthorized users in distributed computing environment.

  • PDF

Security Threats to Enterprise Generative AI Systems and Countermeasures (기업 내 생성형 AI 시스템의 보안 위협과 대응 방안)

  • Jong-woan Choi
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.9-17
    • /
    • 2024
  • This paper examines the security threats to enterprise Generative Artificial Intelligence systems and proposes countermeasures. As AI systems handle vast amounts of data to gain a competitive edge, security threats targeting AI systems are rapidly increasing. Since AI security threats have distinct characteristics compared to traditional human-oriented cybersecurity threats, establishing an AI-specific response system is urgent. This study analyzes the importance of AI system security, identifies key threat factors, and suggests technical and managerial countermeasures. Firstly, it proposes strengthening the security of IT infrastructure where AI systems operate and enhancing AI model robustness by utilizing defensive techniques such as adversarial learning and model quantization. Additionally, it presents an AI security system design that detects anomalies in AI query-response processes to identify insider threats. Furthermore, it emphasizes the establishment of change control and audit frameworks to prevent AI model leakage by adopting the cyber kill chain concept. As AI technology evolves rapidly, by focusing on AI model and data security, insider threat detection, and professional workforce development, companies can improve their digital competitiveness through secure and reliable AI utilization.

Design and Development of Network for Housing Estate Security System

  • Nachin, Awacharin;Mitatha, Somsak;Dejhan, Kobchai;Kirdpipat, Patchanon;Miyanaga, Yoshikazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1480-1484
    • /
    • 2003
  • This paper presents the design and development of network for housing estate security system. The system can cover up to 961 houses which can be up to 1,200 meters long transfer rate of 9,600 bps. This system uses checking and warning the abnormal situation. More over this system has ability to control switch on/off the electrical equipment in the house via AC line control system. The system consists of 4 parts. The first part is a security system of each house using MCS-51 microcontroller as a central processing unit scan 32 sensors and control 8 appliances and send alarm. The MCS-51 microcontroller received control signal via telephone used DTMF circuit. The second part is distributed two levels master/slave network implementing after RS-485 serial communication standard. The protocol its base on the OSI (Open Systems Interconnection) 7 layers protocol model design focus on speed, reliability and security of data that is transferred. The network security using encrypt by DES algorithm, message sequence, time stamp checking and authentication system when user to access and when connect new device to this system. Flow control in system is Poll/Select and Stop-and-Wait method. The third part is central server that using microcomputer which its main function are storing event data into database and can check history event. The final part is internet system which users can access their own homes via the Internet. This web service is based on a combination of SOAP, HTTP and TCP/IP protocols. Messages are exchanged using XML format [6]. In order to save the number of IP address, the system uses 1 IP address for the whole village in which all homes and appliance in this village are addressed using internal identification numbers. This proposed system gives the data transfer accuracy over 99.8% and maximum polling time is 1,120 ms.

  • PDF

An Effective Technique for Protecting Application Data using Security Enhanced (SE) Android in Rooted Android Phones (루팅된 안드로이드 폰에서 SEAndroid를 이용한 효과적인 앱 데이터 보호 기법)

  • Jeong, Youn-sik;Cho, Seong-je
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.352-362
    • /
    • 2017
  • This paper analyzes security threats in Security Enhanced (SE) Android and proposes a new technique to efficiently protect application data including private information on rooted Android phones. On an unrooted device, application data can be accessed by the application itself according to the access control models. However, on a rooted device, a root-privileged shell can disable part or all of the access control model enforcement procedures. Therefore, a root-privileged shell can directly access sensitive data of other applications, and a malicious application can leak the data of other applications outside the device. To address this problem, the proposed technique allows only some specific processes to access to the data of other applications including private information by modifying the existing SEAndroid Linux Security Module (LSM) Hook function. Also, a new domain type of process is added to the target system to enforce stronger security rules. In addition, the proposed technique separates the directory type of a newly installed application and the directory type of previously installed applications. Experimental results show that the proposed technique can effectively protect the data of each application and incur performance overhead up to or less than 2 seconds.

Conceptual Data Modeling: Entity-Relationship Models as Thinging Machines

  • Al-Fedaghi, Sabah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.247-260
    • /
    • 2021
  • Data modeling is a process of developing a model to design and develop a data system that supports an organization's various business processes. A conceptual data model represents a technology-independent specification of structure of data to be stored within a database. The model aims to provide richer expressiveness and incorporate a set of semantics to (a) support the design, control, and integrity parts of the data stored in data management structures and (b) coordinate the viewing of connections and ideas on a database. The described structure of the data is often represented in an entity–relationship (ER) model, which was one of the first data-modeling techniques and is likely to continue to be a popular way of characterizing entity classes, attributes, and relationships. This paper attempts to examine the basic ER modeling notions in order to analyze the concepts to which they refer as well as ways to represent them. In such a mission, we apply a new modeling methodology (thinging machine; TM) to ER in terms of its fundamental building constructs, representation entities, relationships, and attributes. The goal of this venture is to further the understanding of data models and enrich their semantics. Three specific contributions to modeling in this context are incorporated: (a) using the TM model's five generic actions to inject processing in the ER structure; (b) relating the single ontological element of TM modeling (i.e., a thing/machine or thimac) to ER entities and relationships; and (c) proposing a high-level integrated, extended ER model that includes structural and time-oriented notions (e.g., events or behavior).

ACCESS CONTROL MODEL FOR DATA STORED ON CLOUD COMPUTING

  • Mateen, Ahmed;Zhu, Qingsheng;Afsar, Salman;Rehan, Akmal;Mumtaz, Imran;Ahmad, Wasi
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.208-221
    • /
    • 2019
  • The inference for this research was concentrated on client's data protection in cloud computing i.e. data storages protection problems and how to limit unauthenticated access to info by developing access control model then accessible preparations were introduce after that an access control model was recommend. Cloud computing might refer as technology base on internet, having share, adaptable authority that might be utilized as organization by clients. Compositely cloud computing is software's and hardware's are conveying by internet as a service. It is a remarkable technology get well known because of minimal efforts, adaptability and versatility according to client's necessity. Regardless its prevalence large administration, propositions are reluctant to proceed onward cloud computing because of protection problems, particularly client's info protection. Management have communicated worries overs info protection as their classified and delicate info should be put away by specialist management at any areas all around. Several access models were accessible, yet those models do not satisfy the protection obligations as per services producers and cloud is always under assaults of hackers and data integrity, accessibility and protection were traded off. This research presented a model keep in aspect the requirement of services producers that upgrading the info protection in items of integrity, accessibility and security. The developed model helped the reluctant clients to effectively choosing to move on cloud while considerate the uncertainty related with cloud computing.

Research on Data Tuning Methods to Improve the Anomaly Detection Performance of Industrial Control Systems (산업제어시스템의 이상 탐지 성능 개선을 위한 데이터 보정 방안 연구)

  • JUN, SANGSO;Lee, Kyung-ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.4
    • /
    • pp.691-708
    • /
    • 2022
  • As the technology of machine learning and deep learning became common, it began to be applied to research on anomaly(abnormal) detection of industrial control systems. In Korea, the HAI dataset was developed and published to activate artificial intelligence research for abnormal detection of industrial control systems, and an AI contest for detecting industrial control system security threats is being conducted. Most of the anomaly detection studies have been to create a learning model with improved performance through the ensemble model method, which is applied either by modifying the existing deep learning algorithm or by applying it together with other algorithms. In this study, a study was conducted to improve the performance of anomaly detection with a post-processing method that detects abnormal data and corrects the labeling results, rather than the learning algorithm and data pre-processing process. Results It was confirmed that the results were improved by about 10% or more compared to the anomaly detection performance of the existing model.

An Architecture of Access Control Model for Preventing Illegal Information Leakage by Insider (내부자의 불법적 정보 유출 차단을 위한 접근통제 모델 설계)

  • Eom, Jung-Ho;Park, Seon-Ho;Chung, Tai-M.
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.5
    • /
    • pp.59-67
    • /
    • 2010
  • In the paper, we proposed an IM-ACM(Insider Misuse-Access Control Model) for preventing illegal information leakage by insider who exploits his legal rights in the ubiquitous computing environment. The IM-ACM can monitor whether insider uses data rightly using misuse monitor add to CA-TRBAC(Context Aware-Task Role Based Access Control) which permits access authorization according to user role, context role, task and entity's security attributes. It is difficult to prevent information leakage by insider because of access to legal rights, a wealth of knowledge about the system. The IM-ACM can prevent the information flow between objects which have the different security levels using context role and security attributes and prevent an insider misuse by misuse monitor which comparing an insider actual processing behavior to an insider possible work process pattern drawing on the current defined profile of insider's process.