• Title/Summary/Keyword: Data Security

Search Result 6,694, Processing Time 0.039 seconds

Design of a Bit-Serial Divider in GF(2$^{m}$ ) for Elliptic Curve Cryptosystem (타원곡선 암호시스템을 위한 GF(2$^{m}$ )상의 비트-시리얼 나눗셈기 설계)

  • 김창훈;홍춘표;김남식;권순학
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.12C
    • /
    • pp.1288-1298
    • /
    • 2002
  • To implement elliptic curve cryptosystem in GF(2$\^$m/) at high speed, a fast divider is required. Although bit-parallel architecture is well suited for high speed division operations, elliptic curve cryptosystem requires large m(at least 163) to support a sufficient security. In other words, since the bit-parallel architecture has an area complexity of 0(m$\^$m/), it is not suited for this application. In this paper, we propose a new serial-in serial-out systolic array for computing division operations in GF(2$\^$m/) using the standard basis representation. Based on a modified version of tile binary extended greatest common divisor algorithm, we obtain a new data dependence graph and design an efficient bit-serial systolic divider. The proposed divider has 0(m) time complexity and 0(m) area complexity. If input data come in continuously, the proposed divider can produce division results at a rate of one per m clock cycles, after an initial delay of 5m-2 cycles. Analysis shows that the proposed divider provides a significant reduction in both chip area and computational delay time compared to previously proposed systolic dividers with the same I/O format. Since the proposed divider can perform division operations at high speed with the reduced chip area, it is well suited for division circuit of elliptic curve cryptosystem. Furthermore, since the proposed architecture does not restrict the choice of irreducible polynomial, and has a unidirectional data flow and regularity, it provides a high flexibility and scalability with respect to the field size m.

Empirical Analysis on Bitcoin Price Change by Consumer, Industry and Macro-Economy Variables (비트코인 가격 변화에 관한 실증분석: 소비자, 산업, 그리고 거시변수를 중심으로)

  • Lee, Junsik;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.195-220
    • /
    • 2018
  • In this study, we conducted an empirical analysis of the factors that affect the change of Bitcoin Closing Price. Previous studies have focused on the security of the block chain system, the economic ripple effects caused by the cryptocurrency, legal implications and the acceptance to consumer about cryptocurrency. In various area, cryptocurrency was studied and many researcher and people including government, regardless of country, try to utilize cryptocurrency and applicate to its technology. Despite of rapid and dramatic change of cryptocurrencies' price and growth of its effects, empirical study of the factors affecting the price change of cryptocurrency was lack. There were only a few limited studies, business reports and short working paper. Therefore, it is necessary to determine what factors effect on the change of closing Bitcoin price. For analysis, hypotheses were constructed from three dimensions of consumer, industry, and macroeconomics for analysis, and time series data were collected for variables of each dimension. Consumer variables consist of search traffic of Bitcoin, search traffic of bitcoin ban, search traffic of ransomware and search traffic of war. Industry variables were composed GPU vendors' stock price and memory vendors' stock price. Macro-economy variables were contemplated such as U.S. dollar index futures, FOMC policy interest rates, WTI crude oil price. Using above variables, we did times series regression analysis to find relationship between those variables and change of Bitcoin Closing Price. Before the regression analysis to confirm the relationship between change of Bitcoin Closing Price and the other variables, we performed the Unit-root test to verifying the stationary of time series data to avoid spurious regression. Then, using a stationary data, we did the regression analysis. As a result of the analysis, we found that the change of Bitcoin Closing Price has negative effects with search traffic of 'Bitcoin Ban' and US dollar index futures, while change of GPU vendors' stock price and change of WTI crude oil price showed positive effects. In case of 'Bitcoin Ban', it is directly determining the maintenance or abolition of Bitcoin trade, that's why consumer reacted sensitively and effected on change of Bitcoin Closing Price. GPU is raw material of Bitcoin mining. Generally, increasing of companies' stock price means the growth of the sales of those companies' products and services. GPU's demands increases are indirectly reflected to the GPU vendors' stock price. Making an interpretation, a rise in prices of GPU has put a crimp on the mining of Bitcoin. Consequently, GPU vendors' stock price effects on change of Bitcoin Closing Price. And we confirmed U.S. dollar index futures moved in the opposite direction with change of Bitcoin Closing Price. It moved like Gold. Gold was considered as a safe asset to consumers and it means consumer think that Bitcoin is a safe asset. On the other hand, WTI oil price went Bitcoin Closing Price's way. It implies that Bitcoin are regarded to investment asset like raw materials market's product. The variables that were not significant in the analysis were search traffic of bitcoin, search traffic of ransomware, search traffic of war, memory vendor's stock price, FOMC policy interest rates. In search traffic of bitcoin, we judged that interest in Bitcoin did not lead to purchase of Bitcoin. It means search traffic of Bitcoin didn't reflect all of Bitcoin's demand. So, it implies there are some factors that regulate and mediate the Bitcoin purchase. In search traffic of ransomware, it is hard to say concern of ransomware determined the whole Bitcoin demand. Because only a few people damaged by ransomware and the percentage of hackers requiring Bitcoins was low. Also, its information security problem is events not continuous issues. Search traffic of war was not significant. Like stock market, generally it has negative in relation to war, but exceptional case like Gulf war, it moves stakeholders' profits and environment. We think that this is the same case. In memory vendor stock price, this is because memory vendors' flagship products were not VRAM which is essential for Bitcoin supply. In FOMC policy interest rates, when the interest rate is low, the surplus capital is invested in securities such as stocks. But Bitcoin' price fluctuation was large so it is not recognized as an attractive commodity to the consumers. In addition, unlike the stock market, Bitcoin doesn't have any safety policy such as Circuit breakers and Sidecar. Through this study, we verified what factors effect on change of Bitcoin Closing Price, and interpreted why such change happened. In addition, establishing the characteristics of Bitcoin as a safe asset and investment asset, we provide a guide how consumer, financial institution and government organization approach to the cryptocurrency. Moreover, corroborating the factors affecting change of Bitcoin Closing Price, researcher will get some clue and qualification which factors have to be considered in hereafter cryptocurrency study.

Development of Intelligent Job Classification System based on Job Posting on Job Sites (구인구직사이트의 구인정보 기반 지능형 직무분류체계의 구축)

  • Lee, Jung Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.123-139
    • /
    • 2019
  • The job classification system of major job sites differs from site to site and is different from the job classification system of the 'SQF(Sectoral Qualifications Framework)' proposed by the SW field. Therefore, a new job classification system is needed for SW companies, SW job seekers, and job sites to understand. The purpose of this study is to establish a standard job classification system that reflects market demand by analyzing SQF based on job offer information of major job sites and the NCS(National Competency Standards). For this purpose, the association analysis between occupations of major job sites is conducted and the association rule between SQF and occupation is conducted to derive the association rule between occupations. Using this association rule, we proposed an intelligent job classification system based on data mapping the job classification system of major job sites and SQF and job classification system. First, major job sites are selected to obtain information on the job classification system of the SW market. Then We identify ways to collect job information from each site and collect data through open API. Focusing on the relationship between the data, filtering only the job information posted on each job site at the same time, other job information is deleted. Next, we will map the job classification system between job sites using the association rules derived from the association analysis. We will complete the mapping between these market segments, discuss with the experts, further map the SQF, and finally propose a new job classification system. As a result, more than 30,000 job listings were collected in XML format using open API in 'WORKNET,' 'JOBKOREA,' and 'saramin', which are the main job sites in Korea. After filtering out about 900 job postings simultaneously posted on multiple job sites, 800 association rules were derived by applying the Apriori algorithm, which is a frequent pattern mining. Based on 800 related rules, the job classification system of WORKNET, JOBKOREA, and saramin and the SQF job classification system were mapped and classified into 1st and 4th stages. In the new job taxonomy, the first primary class, IT consulting, computer system, network, and security related job system, consisted of three secondary classifications, five tertiary classifications, and five fourth classifications. The second primary classification, the database and the job system related to system operation, consisted of three secondary classifications, three tertiary classifications, and four fourth classifications. The third primary category, Web Planning, Web Programming, Web Design, and Game, was composed of four secondary classifications, nine tertiary classifications, and two fourth classifications. The last primary classification, job systems related to ICT management, computer and communication engineering technology, consisted of three secondary classifications and six tertiary classifications. In particular, the new job classification system has a relatively flexible stage of classification, unlike other existing classification systems. WORKNET divides jobs into third categories, JOBKOREA divides jobs into second categories, and the subdivided jobs into keywords. saramin divided the job into the second classification, and the subdivided the job into keyword form. The newly proposed standard job classification system accepts some keyword-based jobs, and treats some product names as jobs. In the classification system, not only are jobs suspended in the second classification, but there are also jobs that are subdivided into the fourth classification. This reflected the idea that not all jobs could be broken down into the same steps. We also proposed a combination of rules and experts' opinions from market data collected and conducted associative analysis. Therefore, the newly proposed job classification system can be regarded as a data-based intelligent job classification system that reflects the market demand, unlike the existing job classification system. This study is meaningful in that it suggests a new job classification system that reflects market demand by attempting mapping between occupations based on data through the association analysis between occupations rather than intuition of some experts. However, this study has a limitation in that it cannot fully reflect the market demand that changes over time because the data collection point is temporary. As market demands change over time, including seasonal factors and major corporate public recruitment timings, continuous data monitoring and repeated experiments are needed to achieve more accurate matching. The results of this study can be used to suggest the direction of improvement of SQF in the SW industry in the future, and it is expected to be transferred to other industries with the experience of success in the SW industry.

Target Word Selection Disambiguation using Untagged Text Data in English-Korean Machine Translation (영한 기계 번역에서 미가공 텍스트 데이터를 이용한 대역어 선택 중의성 해소)

  • Kim Yu-Seop;Chang Jeong-Ho
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.749-758
    • /
    • 2004
  • In this paper, we propose a new method utilizing only raw corpus without additional human effort for disambiguation of target word selection in English-Korean machine translation. We use two data-driven techniques; one is the Latent Semantic Analysis(LSA) and the other the Probabilistic Latent Semantic Analysis(PLSA). These two techniques can represent complex semantic structures in given contexts like text passages. We construct linguistic semantic knowledge by using the two techniques and use the knowledge for target word selection in English-Korean machine translation. For target word selection, we utilize a grammatical relationship stored in a dictionary. We use k- nearest neighbor learning algorithm for the resolution of data sparseness Problem in target word selection and estimate the distance between instances based on these models. In experiments, we use TREC data of AP news for construction of latent semantic space and Wail Street Journal corpus for evaluation of target word selection. Through the Latent Semantic Analysis methods, the accuracy of target word selection has improved over 10% and PLSA has showed better accuracy than LSA method. finally we have showed the relatedness between the accuracy and two important factors ; one is dimensionality of latent space and k value of k-NT learning by using correlation calculation.

Data Mining Approaches for DDoS Attack Detection (분산 서비스거부 공격 탐지를 위한 데이터 마이닝 기법)

  • Kim, Mi-Hui;Na, Hyun-Jung;Chae, Ki-Joon;Bang, Hyo-Chan;Na, Jung-Chan
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.3
    • /
    • pp.279-290
    • /
    • 2005
  • Recently, as the serious damage caused by DDoS attacks increases, the rapid detection and the proper response mechanisms are urgent. However, existing security mechanisms do not effectively defend against these attacks, or the defense capability of some mechanisms is only limited to specific DDoS attacks. In this paper, we propose a detection architecture against DDoS attack using data mining technology that can classify the latest types of DDoS attack, and can detect the modification of existing attacks as well as the novel attacks. This architecture consists of a Misuse Detection Module modeling to classify the existing attacks, and an Anomaly Detection Module modeling to detect the novel attacks. And it utilizes the off-line generated models in order to detect the DDoS attack using the real-time traffic. We gathered the NetFlow data generated at an access router of our network in order to model the real network traffic and test it. The NetFlow provides the useful flow-based statistical information without tremendous preprocessing. Also, we mounted the well-known DDoS attack tools to gather the attack traffic. And then, our experimental results show that our approach can provide the outstanding performance against existing attacks, and provide the possibility of detection against the novel attack.

A Comparative Study of Korean Home Economic Curriculum and American Practical Problem Focused Family & Consumer Sciences Curricula (우리나라 가정과 교육과정과 미국의 실천적 문제 중심 교육과정과의 비교고찰)

  • Kim, Hyun-Sook;Yoo, Tae-Myung
    • Journal of Korean Home Economics Education Association
    • /
    • v.19 no.4
    • /
    • pp.91-117
    • /
    • 2007
  • This study was to compare the contents and practical problems addressed, the process of teaching-learning method, and evaluation method of Korean Home Economics curriculum and of the Oregon and Ohio's Practical Problem Focused Family & Consumer Sciences Curricula. The results are as follows. First, contents of Korean curriculum are organized by major sub-concepts of Home Economics academic discipline whereas curricular of both Oregon and Ohio states are organized by practical problems. Oregon uses the practical problems which integrate multi-subjects and Ohio uses ones which are good for the contents of the module by integrating concerns or interests which are lower or detailed level (related interests). Since it differentiates interest and module and used them based on the basic concept of Family and Consumer Science, Ohio's approach could be easier for Korean teachers and students to adopt. Second, the teaching-learning process in Korean home economics classroom is mostly teacher-centered which hinders students to develop higher order thinking skills. It is recommended to use student-centered learning activities. State of Oregon and Ohio's teaching-learning process brings up the ability of problem-solving by letting students clearly analyze practical problems proposed, solve problems by themselves through group discussions and various activities, and apply what they learn to other problems. Third, Korean evaluation system is heavily rely on summative evaluation such as written tests. It is highly recommended to facilitate various performance assessment tools. Since state of Oregon and Ohio both use practical problems, they evaluate students mainly based on their activity rather than written tests. The tools for evaluation include project documents, reports of learning activity, self-evaluation, evaluation of discussion activity, peer evaluation in a group for each students for their performance, assessment about module, and written tests as well.

  • PDF

Abnormal Water Temperature Prediction Model Near the Korean Peninsula Using LSTM (LSTM을 이용한 한반도 근해 이상수온 예측모델)

  • Choi, Hey Min;Kim, Min-Kyu;Yang, Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.265-282
    • /
    • 2022
  • Sea surface temperature (SST) is a factor that greatly influences ocean circulation and ecosystems in the Earth system. As global warming causes changes in the SST near the Korean Peninsula, abnormal water temperature phenomena (high water temperature, low water temperature) occurs, causing continuous damage to the marine ecosystem and the fishery industry. Therefore, this study proposes a methodology to predict the SST near the Korean Peninsula and prevent damage by predicting abnormal water temperature phenomena. The study area was set near the Korean Peninsula, and ERA5 data from the European Center for Medium-Range Weather Forecasts (ECMWF) was used to utilize SST data at the same time period. As a research method, Long Short-Term Memory (LSTM) algorithm specialized for time series data prediction among deep learning models was used in consideration of the time series characteristics of SST data. The prediction model predicts the SST near the Korean Peninsula after 1- to 7-days and predicts the high water temperature or low water temperature phenomenon. To evaluate the accuracy of SST prediction, Coefficient of determination (R2), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) indicators were used. The summer (JAS) 1-day prediction result of the prediction model, R2=0.996, RMSE=0.119℃, MAPE=0.352% and the winter (JFM) 1-day prediction result is R2=0.999, RMSE=0.063℃, MAPE=0.646%. Using the predicted SST, the accuracy of abnormal sea surface temperature prediction was evaluated with an F1 Score (F1 Score=0.98 for high water temperature prediction in summer (2021/08/05), F1 Score=1.0 for low water temperature prediction in winter (2021/02/19)). As the prediction period increased, the prediction model showed a tendency to underestimate the SST, which also reduced the accuracy of the abnormal water temperature prediction. Therefore, it is judged that it is necessary to analyze the cause of underestimation of the predictive model in the future and study to improve the prediction accuracy.

Multiple SL-AVS(Small size & Low power Around View System) Synchronization Maintenance Method (다중 SL-AVS 동기화 유지기법)

  • Park, Hyun-Moon;Park, Soo-Huyn;Seo, Hae-Moon;Park, Woo-Chool
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.73-82
    • /
    • 2009
  • Due to the many advantages including low price, low power consumption, and miniaturization, the CMOS camera has been utilized in many applications, including mobile phones, the automotive industry, medical sciences and sensoring, robotic controls, and research in the security field. In particular, the 360 degree omni-directional camera when utilized in multi-camera applications has displayed issues of software nature, interface communication management, delays, and a complicated image display control. Other issues include energy management problems, and miniaturization of a multi-camera in the hardware field. Traditional CMOS camera systems are comprised of an embedded system that consists of a high-performance MCU enabling a camera to send and receive images and a multi-layer system similar to an individual control system that consists of the camera's high performance Micro Controller Unit. We proposed the SL-AVS (Small Size/Low power Around-View System) to be able to control a camera while collecting image data using a high speed synchronization technique on the foundation of a single layer low performance MCU. It is an initial model of the omni-directional camera that takes images from a 360 view drawing from several CMOS camera utilizing a 110 degree view. We then connected a single MCU with four low-power CMOS cameras and implemented controls that include synchronization, controlling, and transmit/receive functions of individual camera compared with the traditional system. The synchronization of the respective cameras were controlled and then memorized by handling each interrupt through the MCU. We were able to improve the efficiency of data transmission that minimizes re-synchronization amongst a target, the CMOS camera, and the MCU. Further, depending on the choice of users, respective or groups of images divided into 4 domains were then provided with a target. We finally analyzed and compared the performance of the developed camera system including the synchronization and time of data transfer and image data loss, etc.

Analysis of Micro-Sedimentary Structure Characteristics Using Ultra-High Resolution UAV Imagery: Hwangdo Tidal Flat, South Korea (초고해상도 무인항공기 영상을 이용한 한국 황도 갯벌의 미세 퇴적 구조 특성 분석)

  • Minju Kim;Won-Kyung Baek;Hoi Soo Jung;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.295-305
    • /
    • 2024
  • This study aims to analyze the micro-sedimentary structures of the Hwangdo tidal flats using ultra-high resolution unmanned aerial vehicle (UAV) data. Tidal flats, located in the transitional area between land and sea, constantly change due to tidal activities and provide a unique environment important for understanding sedimentary processes and environmental conditions. Traditional field observation methods are limited in spatial and temporal coverage, and existing satellite imagery does not provide sufficient resolution to study micro-sedimentary structures. To overcome these limitations, high-resolution images of the Hwangdo tidal flats in Chungcheongnam-do were acquired using UAVs. This area has experienced significant changes in its sedimentary environment due to coastal development projects such as sea wall construction. From May 17 to 18, 2022, sediment samples were collected from 91 points during field surveys and 25 in-situ points were intensively analyzed. UAV data with a spatial resolution of approximately 0.9 mm allowed identifying and extracting parameters related to micro-sedimentary structures. For mud cracks, the length of the major axis of the polygons was extracted, and the wavelength and ripple symmetry index were extracted for ripple marks. The results of the study showed that in areas with mud content above 80%, mud cracks formed at an average major axis length of 37.3 cm. In regions with sand content above 60%, ripples with an average wavelength of 8 cm and a ripple symmetry index of 2.0 were formed. This study demonstrated that micro-sedimentary structures of tidal flats can be effectively analyzed using ultra-high resolution UAV data without field surveys. This highlights the potential of UAV technology as an important tool in environmental monitoring and coastal management and shows its usefulness in the study of sedimentary structures. In addition, the results of this study are expected to serve as baseline data for more accurate sedimentary facies classification.

The Characteristics and Medical Utilization of Migrant Workers (외국인 노동자의 특성과 의료이용 실태)

  • Ju, Sun Me
    • Korean Journal of Occupational Health Nursing
    • /
    • v.7 no.2
    • /
    • pp.164-176
    • /
    • 1998
  • This study deals with the current medical utilization for migrant workers and the characteristics of them. The purpose of this study is to provide the basic information to establish proper medical policy. For the study self-made questionnaire was used, which was answered by 453 migrant workers working in the area of manufacturing and non-technical work in 10 cities like Seoul, Inchon, Namyangju, Sungnam, Kwangju, Pyungchon, Kunpo, Kimpo, Masuk in Kyungki-do and Chunan in Chungchungnam-do. Besides, 303 medical records of those who had visited free medical check-up center were analyzed. The period of accumulating data is 6 months, from November 1st, 1996 to April 30th, 1997. The characteristics of migrant workers and current medical utilization are analyzed by percentage and the relation between characteristics and current medical utilization were analyzed using ${\chi}^2$-test, t-test, ANOVA. The finding of this study was as follows : 1) The number of nationality was 16. The first majority was Philippians as 32.0%. Among 16 nationalities Southeastern and Northern Asians were 48.9%, Southwestern Asian was 46.5%, the rest was 7.3%. Men were 81.0%, those who are aged from 26 to 30 were 39.0%, Graduatee from high school 92.7%, Christians 56.3%, unmarried 55.4% and salary from 600,000 Won to 800,000 Won 53.8% averaging monthly payment 669,810 Won. As for their residence, those who resided over 3 years were 31.9% and the illegal residence reached 77.4%. As for Korean language, those who speak in middle level were 5.6%. 2) As for kind of work and circumstances, manufacturing was 81.1%, 4 off-days per month 72.2% and 9-10 working hours per day 42.1%. As for accommodation, residence in fabric was 62.6% and one or two members as roommate 40.2%. 3) The characteristics of health behavior showed that 89.4% of migrant workers had 3 meals, 70.9% of them did not drink alcohol, 73.5% of them did not smoke. 4) As a characteristic of health status, 71.8% of them perceived of their health. 76.1% thought that they had no illness before coming Korea. Among them who recognized their illness, those who had problem in circulatory system was 35.3%, respiratory system ENT 19.1% and nervous system 19.1%.66.2% of those having illness had already had sickness when coming to Korea. 5) During last one month, 79.2% of them were known as ones having no illness. Among the sick, those who had problem in circulatory system was 31.6%, nervous system 23.7% and respiratory system 21.1%. 60.3% of the sick were not cured at that time. 6) Sorting the symptom of those who visited free medical check up, dental care was 24.2%, orthopedic 14.0% and digestive system 13.8%. Teethache was 34.4%, stomach problem 11.6%, upper respiratory inflammation 10.2% and back pain 5.9%. Averagely they visited free medical check up 1-2 times. According to symptom, epilepsy 25.5 times, heart and vascular disease 9 times, constipation 2.8%, neurosis 2.38 times and stomach problem 2.34 times. 7) The most frequently visited medical service by migrant workers was hospital. The most mentioned reason was good healing as 36.3%. The medical service satisfied migrant workers mostly was hospital as 64.3%. The reason of satisfaction was also good healing as 45.9%. 8) 77.2% of respondents did not spend money for medical check. Average monthly medical cost was 25,100 Won, 3.7% of income. Those who had no medical security was 73.4%. In their case, 67.7% got discount from hospital or support from working place and religious organization. 9) As for the difference of medical utilization according for the characteristics of migrant workers, legal workers and no-Korean speaker used hospital more frequently. 10) Those who were satisfied most of all with the service of hospital were female workers, hinduists and buddhists, legal workers or manufacture workers. 11) Christians, those who have 3 meals or recognize themselves as healthy ones mostly had no illness. As a result, the most of migrant workers in Korea are from Asia. They are good educated but are working in manufacturing and illegal. Their average income is under 700,000 Won which in not enough for medical cost. They have no medical security and medical fee is supported by religious organization or discounted. Considering these facts the medical policy by government is to be established.

  • PDF