Journal of Information Technology Applications and Management
/
제27권2호
/
pp.37-50
/
2020
This paper is very exploratory and addresses the issue 'Is a general quality model of software possible?'. If possible, how specific can/should it be?' ISO 25000 Series SQuaRE is generally regarded as a general quality model which can be applied to most kinds of software. Usability is one of the 8 characteristics of SQuaRE's Product Quality Model. It is the main issue associated with SQuaRE's Quality in Use Model too. it is the most important concept associated software quality since using is the only ultimate goal of software products. Playability, however, is generally regarded as a special type of usability, which can be applied to game software. This common idea contradicts with the idea that SQuaRE is valid for most kinds, at least many kinds, of software. The empirical evidences of this paper show that SQuaRE is too specific to be a general quality model of software.
The objective of this study is to test the applicability of neural network models to forecast water quality at Naesa and Pyongchang river. Water quality data devided into rainy day and non-rainy day to find characteristics of them. The mean and maximum data of rainy day show higher than those of non-rainy day. And discharge correlate with TOC at Pyongchang river. Neural network model is trained to the correlation of discharge with water quality. As a result, it is convinced that the proposed neural network model can apply to the analysis of real time water quality monitoring.
Early criticality prediction models that determine whether a design entity is fault-prone or not are becoming more and more important as software development projects are getting larger. Effective predictions can reduce the system development cost and improve software quality by identifying trouble-spots at early phases and proper allocation of effort and resources. Many prediction models have been proposed using statistical and machine learning methods. This paper builds a prediction model using Support Vector Machine(SVM) which is one of the most popular modern classification methods and compares its prediction performance with a well-known prediction model, BackPropagation neural network Model(BPM). SVM is known to generalize well even in high dimensional spaces under small training data conditions. In prediction performance evaluation experiments, dimensionality reduction techniques for data set are not used because the dimension of input data is too small. Experimental results show that the prediction performance of SVM model is slightly better than that of BPM and polynomial kernel function achieves better performance than other SVM kernel functions.
The main purposes of the study were to develop and test a model which explains the dynamic relationship among factors reported as affecting to the quality of life of individuals with rheumatoid arthritis and to examine the relationship between self-help response and quaility of life. Data for the study were collected from March 1996 to December 1996 from 153 female patients who regularly visited a clinic for people with rheumatism. The patients were introduced to the investigators by nurses who worked at that clinic, and then the investigator interviewed the patients for 30 to 40 minutes to collect the data. Instruments used in the study were modified self-report questionaires from the ones which were already developed in previous studies or from related literature. Data analysis were performed using LISREL(Lineal Structural Relations) 8 program to test whether the proposed hypothesized model fit the collected data. To test the fitablity of the hypothesized model both a general fit measure and a detailed fit measure were used. Based on the test results from the various fit measures, the hypothesized model was found to be well suited to the real data. As characteristics related to illness becomes severe, the feasibility for these characteristics leading to the perception of uncertainty about the illness tend to increase, but, the direct effects from the illness characteristics(such as level of physical symptoms, sense of social-psychologic change, limitations of action) as they are related to the other intrinsic variables (self-efficacy or self-help behavior and quality of life), were found to be not significant. It was found that uncertainty had a direct effect on self-efficacy but did not have a direct effect on self-help behavior or quality of life. Also, it is noted that self-efficacy had a positive effect on self-help behavior and quality of life and there was a bilateral relationship between self-efficacy and self-help behavior. Lastly, the hypothesis proposed from the theoretical model in this study was supported basis of the results that self-help behavior provides both direct and positive effects to quality of life. Particularity, since a bilateral relationship was also found between self-help behavior and quality of life in the modified model, as self-help behavior increased, so did quality of life. And, reversely, as quality of life increased, so did self-help behavior. In conclusion, the results of this study suggest that focusing on both acquirement and reinforcement of adjustment factors or self-help behavior is more efficient than focusing on the characteristics of illness in establishing the stategies for improving quality of life of individuals with rheumatoid arthritis.
Seo, Jeong-Wook;Kim, Ki-Hong;Seok, Jong-Won;Bae, Keun-Sung
음성과학
/
제7권1호
/
pp.17-29
/
2000
The STC(Sinusoidal Transform Coding) is a vocoding technique that uses a sinusoidal speech model to obtain high- quality speech at low data rate. It models and synthesizes the speech signal with fundamental frequency and its harmonic elements in frequency domain. To reduce the data rate, it is necessary to represent the sinusoidal amplitudes and phases with as small number of peaks as possible while maintaining the speech quality. As a basic research to develop a low-rate speech coding algorithm using the sinusoidal model, in this paper, we investigate the speech quality depending on the number of sinusoids. By varying the number of spectral peaks from 5 to 40 speech signals are reconstructed, and then their qualities are evaluated using spectral envelope distortion measure and MOS(Mean Opinion Score). Two approaches are used to obtain the spectral peaks: one is a conventional STFT (Short-Time Fourier Transform), and the other is a multiresolutional analysis method.
Purpose: The purpose of this study was to present a methodology for assessing the efficiency of supply chain quality management considering characteristics of defense industries to provide academic and policy implications for strengthening quality competitiveness of military supplies. Methods: Using the defense industry's empirical data, conduct an efficiency evaluation by utilizing a multi-stage DEA/Entropy Model for defense industries subject to the quality level survey of military goods manufacturers in 2017. Results: The results of this study are as follows; the first step of the multi-stage DEA model, Quality Management Performance Efficiency Analysis, shows that the CCR model and the BCC model are more efficient than the parent company. the second stage of the multi-stage DEA model showed that the CCR model was slightly more efficient than the parent company and the BCC model was more efficient than the parent.the overall efficiency value of the multistage DEA model, calculated by multipointing the efficiency value of the first stage by the second stage, was more efficient than the parent. Conclusion: The results of this study show that the efficiency of supply chian quality management performance and profitability in the defense industry can be analyzed for the first time using the multistage DEA/Entropy model to identify specific inefficiencies and support objective decision making.
[ $NO_2$ ] concentration characteristics of Busan metropolitan city was analysed by statistical method using hourly $NO_2$ concentration data$(1998\~2000)$ collected from air quality monitoring sites of the metropolitan city. 4 representative regions were selected among air quality monitoring sites of Ministry of environment. Concentration data of $NO_2$, 5 air pollutants, and data collected at AWS was used. Both Stepwise Multiple Regression model and ARIMA model for prediction of $NO_2$ concentrations were adopted, and then their results were compared with observed concentration. While ARIMA model was useful for the prediction of daily variation of the concentration, it was not satisfactory for the prediction of both rapid variation and seasonal variation of the concentration. Multiple Regression model was better estimated than ARIMA model for prediction of $NO_2$ concentration.
This paper is concerned with suggesting a Bayesian method for variable selection in multinomial logit model. It is based upon an optimal rule suggested by use of Bayes rule which minimizes a risk induced by selecting the multinomial logit model. The rule is to find a subset of variables that maximizes the marginal likelihood of the model. We also propose a Laplace-Metropolis algorithm intended to suggest a simple method forestimating the marginal likelihood of the model. Based upon two examples, artificial data and empirical data examples, the Bayesian method is illustrated and its efficiency is examined.
평창강 수질자동측정망 실시간 자료를 이용하여 강우시와 무강우시로 구분하여 분석하였다. 강우시에 측정된 TOC 자료는 무강우시 측정된 자료에 비해 평균값, 최대값, 표준편차가 크게 나타났으며, 강우시의 DO 자료는 무강우시에 측정된 자료보다 낮아 유량이 수질변화에 영향을 미치는 것으로 분석되었다. 신경망 모형과 뉴로-퍼지 모형으로 수질예측 모형을 구성하고, 적용하였다. LMNN, MDNN, ANFIS 모형은 TOC 모의에서 DO 예측에서는 LMNN, MDNN 모형이 ANFIS 모형보다 좋은 결과를 보였으며, 정량적 자료에 정성적 자료인 시간을 학습한 MDNN 모형이 가장 작은 오차를 보였다. 하천의 실시간적 관리를 위해서는 유량과 수질의 측정이 동일한 지점에서 동시간적으로 이루어져야 보다 효과적이다. 그러나 수질자동측정망 지점과 T/M 수위관측소가 원거리에 위치한 경우들이 있으며, 평창강 수질자동측정망 지점이 그 중 하나이다. 연구에서는 평창강 수질자동측정망 지점의 유출예측을 위한 신경망 모형을 구성하여 수질예측 모형과 연계하였으며, 연계된 모형은 수질예측에 개선된 결과를 보였다.
Soil and Water Assessment Tool (SWAT) model has been widely used in estimation of flow and water quality at various watersheds worldwide, and it has an auto-calibration tool that could calibrate the flow and water quality data automatically from thousands of simulations. However, only continuous measured day flow/water quality data could be used in the current SWAT auto-calibration tool. Therefore, 8-day interval flow and water quality data measured nationwide by Korean Ministry of Environment (MOE) could not be used in SWAT auto-calibration even though long-term flow and water quality data in the Korean Total Maximum Daily Load (TMDL) watersheds available. In this study, current SWAT auto-calibration was modified to calibrate flow and water quality using 8-day interval flow and water quality data. As a result of this study, the Nash and Sutcliffe Efficiency (NSE) values for flow estimation using auto-calibration are 0.77 (calibration period) and 0.68 (validation period), and NSE value for water quality (T-P load) estimation (using the 8-day interval water quality data) is 0.80. The enhanced SWAT auto-calibration could be used in the estimation of continuous flow and water quality data at the outlet of TMDL watersheds and ungaged point of watersheds. In the next study, the enhanced SWAT auto-calibration will be integrated with Web based Load Duration Curve (LDC) system, and it could be suggested as methods of appraisal of TMDL in South Korea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.