• Title/Summary/Keyword: Data Migration

Search Result 729, Processing Time 0.023 seconds

Impact of Highway Construction on the Regional Economy: Gangil-Chuncheon Highway (고속도로 건설이 지역경제에 미치는 기여도 분석연구: 강일~춘천 고속도로)

  • Na, Sung-Yong;Lee, Du-Heon;Kim, Hyun-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1183-1190
    • /
    • 2022
  • Recently, the Ministry of Strategy and Finance announced a plan to reduce the proportion of economic evaluation in non-metropolitan areas and strengthen balanced development evaluation through the reorganization of the preliminary feasibility study system. In addition, the social value of the quality of life, such as job, environment, and safety, which may be affected by the implementation of transportation facility investment projects, was reflected as the main item of policy evaluation. In this study, the ripple effect of the project in terms of social value was reviewed for the Gangil-Chuncheon. The effect of highway opening was investigated by reviewing the feasibility report, post-evaluation report, and statistical indicators. Recently, the Gangil-Chuncheon highway is getting used by around 110,000 people per day. The number of tourists in Chuncheon rapidly has increased from 5 million a year to more than 11 million now. In addition, it was confirmed to produce effects such as population migration, net inflow and land price increase, improvement of living convenience, and expansion of emergency medical care. Although this ripple effect was influenced by various socio-economic factors as well as the opening of the highway, it is clear that it is difficult to occur without the opening of the highway. It is judged that the evaluation of indirect benefits and social values due to the opening of the highway can be quantified through continuous research and data construction. Post-evaluation of construction works, including project efficiency evaluation and ripple effect evaluation, is performed for construction works with a construction cost of more than 50 billion won. In the future, we will continuously improve the evaluation system in order to evaluate the indirect benefits and social values of public investment projects.

ZNF204P is a stemness-associated oncogenic long non-coding RNA in hepatocellular carcinoma

  • Hwang, Ji-Hyun;Lee, Jungwoo;Choi, Won-Young;Kim, Min-Jung;Lee, Jiyeon;Chu, Khanh Hoang Bao;Kim, Lark Kyun;Kim, Young-Joon
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.281-286
    • /
    • 2022
  • Hepatocellular carcinoma is a major health burden, and though various treatments through much research are available, difficulties in early diagnosis and drug resistance to chemotherapy-based treatments render several ineffective. Cancer stem cell model has been used to explain formation of heterogeneous cell population within tumor mass, which is one of the underlying causes of high recurrence rate and acquired chemoresistance, highlighting the importance of CSC identification and understanding the molecular mechanisms of CSC drivers. Extracellular CSC-markers such as CD133, CD90 and EpCAM have been used successfully in CSC isolation, but studies have indicated that increasingly complex combinations are required for accurate identification. Pseudogene-derived long non-coding RNAs are useful candidates as intracellular CSC markers - factors that regulate pluripotency and self-renewal - given their cancer-specific expression and versatile regulation across several levels. Here, we present the use of microarray data to identify stemness-associated factors in liver cancer, and selection of sole pseudogene-derived lncRNA ZNF204P for experimental validation. ZNF204P knockdown impairs cell proliferation and migration/invasion. As the cytosolic ZNF204P shares miRNA binding sites with OCT4 and SOX2, well-known drivers of pluripotency and self-renewal, we propose that ZNF204P promotes tumorigenesis through the miRNA-145-5p/OCT4, SOX2 axis.

Ectopic teeth with disparate migration: A literature review and new case series

  • Pallak Arora ;Madhu K. Nair ;Hui Liang ;Paras B. Patel ;John M. Wright;Mehrnaz Tahmasbi-Arashlow
    • Imaging Science in Dentistry
    • /
    • v.53 no.3
    • /
    • pp.229-238
    • /
    • 2023
  • Purpose: Ectopic eruption can be defined as the emergence of a tooth in an abnormal location, where the tooth does not follow its typical eruption pathway. While ectopic eruption within the dentate region is well-documented in the literature, ectopic eruption in non-dentate regions is relatively rare. This study aimed to report 6 cases of ectopic teeth and present a systematic review of the English-language literature on ectopic teeth, emphasizing demographic characteristics, radiographic features, potential complications, and treatment options. Materials and Methods: A literature search was conducted using the PubMed, Medline, Web of Science, and Cochrane databases. The demographic data and radiographic findings of patients presenting with ectopic teeth were recorded. Results: The literature review yielded 61 cases of ectopic teeth, with patients ranging in age from 3 to 74 years. The findings from these previously reported cases demonstrated that the most common location for ectopic teeth was the maxillary sinus, which is consistent with this case series. The Pearson chi-square test was performed to evaluate the correlation between age and location of ectopic teeth, and the results were found to be statistically significant (P<0.05). However, no statistically significant relationship was observed between sex and the location of ectopic teeth. Conclusion: The distinct features of these cases warrant reporting. This study presents the first case of supernumerary teeth in the condyle without any associated pathosis. Another notable characteristic is the pre-eruptive resorption of 2 inverted supernumerary teeth ectopically located in the palate, which predisposes to sinus opacification.

Policy Suggestions to Retain Skilled Migrant Fishermen in Korea : Focus on Offshore Fishing (숙련 외국인 어선원 확보를 위한 제도 개선 방안 : 연근해 어업을 중심으로)

  • Chaemin Hyun;Seori Choi
    • The Journal of Fisheries Business Administration
    • /
    • v.54 no.1
    • /
    • pp.1-22
    • /
    • 2023
  • With the restriction of foreigners' entry into Korea due to the COVID-19 pandemic, the fishery industry faced significant challenges in supplying migrant workers. In response to this, there is growing interest in methods that could facilitate the stable employment of migrant workers. This paper investigates whether the current system used for the employment of migrant workers in the fishery industry, which is highly dependent on them, adequately performs its function of providing a stable and skilled workforce amid the intensified labor shortage resulting from decreasing numbers of households with employment in the fishery and the aging Korean fishermen. To this end, past studies and government documents pertaining to the current system were analyzed, and a survey targeting the owners of offshore fishing boats that employ migrant workers was conducted. A total of 147 owners of fishing boats responded to the survey, and the data of 499 migrant workers employed by them were used for the analysis. The analysis indicated that the migrant fishermen had difficulty in acquiring minimum scores for the change of visa status according to the criteria for the Skilled Worker Points System. Furthermore, distinct differences were found between the characteristics and working conditions of migrant workers employed through the Employment Permit System (EPS) and the Foreign Seamen System. Based on this result, this paper suggests the reorganization of the skilled migrant worker system in the fishery industry and the expansion of the regional specialized visa pilot project.

RNA Editing Enzyme ADAR1 Suppresses the Mobility of Cancer Cells via ARPIN

  • Min Ji Park;Eunji Jeong;Eun Ji Lee;Hyeon Ji Choi;Bo Hyun Moon;Keunsoo Kang;Suhwan Chang
    • Molecules and Cells
    • /
    • v.46 no.6
    • /
    • pp.351-359
    • /
    • 2023
  • Deamination of adenine or cytosine in RNA, called RNA editing, is a constitutively active and common modification. The primary role of RNA editing is tagging RNA right after its synthesis so that the endogenous RNA is recognized as self and distinguished from exogenous RNA, such as viral RNA. In addition to this primary function, the direct or indirect effects on gene expression can be utilized in cancer where a high level of RNA editing activity persists. This report identified actin-related protein 2/3 complex inhibitor (ARPIN) as a target of ADAR1 in breast cancer cells. Our comparative RNA sequencing analysis in MCF7 cells revealed that the expression of ARPIN was decreased upon ADAR1 depletion with altered editing on its 3'UTR. However, the expression changes of ARPIN were not dependent on 3'UTR editing but relied on three microRNAs acting on ARPIN. As a result, we found that the migration and invasion of cancer cells were profoundly increased by ADAR1 depletion, and this cellular phenotype was reversed by the exogenous ARPIN expression. Altogether, our data suggest that ADAR1 suppresses breast cancer cell mobility via the upregulation of ARPIN.

A Novel Role of Hyaluronic Acid and Proteoglycan Link Protein 1 (HAPLN1) in Delaying Vascular Endothelial Cell Senescence

  • Dan Zhou;Ji Min Jang;Goowon Yang;Hae Chan Ha;Zhicheng Fu;Dae Kyong Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.629-639
    • /
    • 2023
  • Cardiovascular diseases (CVDs) are the most common cardiovascular system disorders. Cellular senescence is a key mechanism associated with dysfunction of aged vascular endothelium. Hyaluronic acid and proteoglycan link protein 1 (HAPLN1) has been known to non-covalently link hyaluronic acid (HA) and proteoglycans (PGs), and forms and stabilizes HAPLN1-containing aggregates as a major component of extracellular matrix. Our previous study showed that serum levels of HAPLN1 decrease with aging. Here, we found that the HAPLN1 gene expression was reduced in senescent human umbilical vein endothelial cells (HUVECs). Moreover, a recombinant human HAPLN1 (rhHAPLN1) decreased the activity of senescence-associated β-gal and inhibited the production of senescence-associated secretory phenotypes, including IL-1β, CCL2, and IL-6. rhHAPLN1 also downregulated IL-17A levels, which is known to play a key role in vascular endothelial senescence. In addition, rhHAPLN1 protected senescent HUVECs from oxidative stress by reducing cellular reactive oxygen species levels, thus promoting the function and survival of HUVECs and leading to cellular proliferation, migration, and angiogenesis. We also found that rhHAPLN1 not only increases the sirtuin 1 (SIRT1) levels, but also reduces the cellular senescence markers levels, such as p53, p21, and p16. Taken together, our data indicate that rhHAPLN1 delays or inhibits the endothelial senescence induced by various aging factors, such as replicative, IL-17A, and oxidative stress-induced senescence, thus suggesting that rhHAPLN1 may be a promising therapeutic for CVD and atherosclerosis.

Experimental Studies on the Skin Barrier Improvement and Anti-inflammatory Activity based on a Bibliometric Network Map

  • Eunsoo Sohn;Sung Hyeok Kim;Chang Woo Ha;Sohee Jang;Jung Hun Choi;Hyo Yeon Son;Cheol-Joo Chae;Hyun Jung Koo;Eun-Hwa Sohn
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.40-40
    • /
    • 2023
  • Atopic dermatitis is a chronic inflammatory skin diseases caused by skin barrier dysfunction. Allium victoralis var. Platyphyllum (AVP) is a perennial plant used as vegetable and herbal medicine. The purpose of this study was to suggest that AVP is a new cosmetic material by examining the effects of AVP on the skin barrier and inflammatory response. A bibliometric network analysis was performed through keyword co-occurrence analysis by extracting author keyword from 69 articles retrieved from SCOPUS. We noted the anti-inflammatory activity shown by the results of clustering and mapping from network visualization analysis using VOSviewer software tool. HPLC-UV analysis showed that AVP contains 0.12 ± 0.02 mg/g of chlorogenic acid and 0.10 ± 0.01 mg/g of gallic acid. AVP at 100 ㎍/mL was shown to increase the mRNA levels of filaggrin and involucrin related to skin barrier function by 1.50-fold and 1.43-fold, respectively. In the scratch assay, AVP at concentrations of 100 ㎍/mL and 200 ㎍/mL significantly increased the cell migration rate and narrowed the scratch area. In addition, AVP suppressed the increase of inflammation-related factors COX-2 and NO and decreased the release of β-hexosaminidase. This study suggests that AVP can be developed as a functional cosmetic material for atopy management through skin barrier protection effects, anti-inflammatory and anti-itch effects.

  • PDF

A Study on Changes in Impervious Surface Area Rate at Administrative Units for Gyeongsangnam-do (경상남도 행정구역별 불투수면적률 현황 및 변화 연구)

  • Kim, Hyeonjoon;Choi Yoonhee;Kim, Hakkwan;Jang, Min-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.4
    • /
    • pp.117-125
    • /
    • 2023
  • This study aimed to analyze the recent status and changes in impervious surface areas and their ratios across regions in Gyeongsangnam-do, providing fundamental data for regional development and impervious surface management. Based on the 'Guidelines for Calculating Water Cycle Management Indicators for Nonpoint Pollution Source Control(Ministry of Environment)', we processed the land characteristics survey map(shapefile) from 2018 and 2022 to analyze impervious surface area and their rates by administrative boundaries. The impervious surface area in Gyeongsangnam-do increased from 75,652 ha in 2018 to 81,055 ha in 2022, with the rate rising by 0.51% from 7.18% to 7.69%. The average of impervious surface area across 545 eupmyeon units expanded by approximately 9 ha, from 139.8 ha in 2018 to 148.8 ha in 2022, with the rate increasing by 0.71%. Concurrently, the whole population declined by 2.8% while the number of households surged by 6.4%, correlating with the growth in impervious areas. Despite population decreases, factors such as population migration, increased household fragmentation, new residential developments, and industrial facility expansions have consistently contributed to the rise in impervious surface area. Notably, even in areas with high impervious surface area rate, significant disparities existed between urbanized areas and predominantly rural regions. Furthermore, about 333 units(61% of the whole eupmyeons), showed negligible changes in their impervious surface area rate, with an increase of less than 0.5%.

RNA polymerase I subunit D activated by Yin Yang 1 transcription promote cell proliferation and angiogenesis of colorectal cancer cells

  • Jianfeng Shan;Yuanxiao Liang;Zhili Yang;Wenshan Chen;Yun Chen;Ke Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.265-273
    • /
    • 2024
  • This study aims to explore possible effect of RNA polymerase I subunit D (POLR1D) on proliferation and angiogenesis ability of colorectal cancer (CRC) cells and mechanism herein. The correlation of POLR1D and Yin Yang 1 (YY1) expressions with prognosis of CRC patients in TCGA database was analyzed. Quantitative realtime polymerase chain reaction (qRT-PCR) and Western blot were applied to detect expression levels of POLR1D and YY1 in CRC cell lines and CRC tissues. SW480 and HT-29 cells were transfected with si-POLR1D or pcDNA3.1-POLR1D to achieve POLR1D suppression or overexpression before cell migration, angiogenesis of human umbilical vein endothelial cells were assessed. Western blot was used to detect expressions of p38 MAPK signal pathway related proteins and interaction of YY1 with POLR1D was confirmed by dual luciferase reporter gene assay and chromatin immunoprecipitation (ChIP). TCGA data showed that both POLR1D and YY1 expressions were up-regulated in CRC patients. High expression of POLR1D was associated with poor prognosis of CRC patients. The results showed that POLR1D and YY1 were highly expressed in CRC cell lines. Inhibition or overexpression of POLR1D can respectively suppress or enhance proliferation and angiogenesis of CRC cells. YY1 inhibition can suppress CRC progression and deactivate p38 MAPK signal pathway, which can be counteracted by POLR1D overexpression. JASPAR predicted YY1 can bind with POLR1D promoter, which was confirmed by dual luciferase reporter gene assay and ChIP. YY1 transcription can up-regulate POLR1D expression to activate p38 MAPK signal pathway, thus promoting proliferation and angiogenesis ability of CRC cells.

IL-17A and Th17 Cells Contribute to Endometrial Cell Survival by Inhibiting Apoptosis and NK Cell Mediated Cytotoxicity of Endometrial Cells via ERK1/2 Pathway

  • Young-Ju Kang;Hee Jun Cho;Yunhee Lee;Arum Park;Mi Jeong Kim;In Cheul Jeung;Yong-Wook Jung;Haiyoung Jung;Inpyo Choi;Hee Gu Lee;Suk Ran Yoon
    • IMMUNE NETWORK
    • /
    • v.23 no.2
    • /
    • pp.14.1-14.14
    • /
    • 2023
  • Immune status including the immune cells and cytokine profiles has been implicated in the development of endometriosis. In this study, we analyzed Th17 cells and IL-17A in peritoneal fluid (PF) and endometrial tissues of patients with (n=10) and without (n=26) endometriosis. Our study has shown increased Th17 cell population and IL-17A level in PF with endometriosis patients. To determine the roles of IL-17A and Th17 cells in the development of endometriosis, the effect of IL-17A, major cytokine of Th17, on endometrial cells isolated from endometriotic tissues was examined. Recombinant IL-17A promoted survival of endometrial cells accompanied by increased expression of anti-apoptotic genes, including Bcl-2 and MCL1, and the activation of ERK1/2 signaling. In addition, treatment of IL-17A to endometrial cells inhibited NK cell mediated cytotoxicity and induced HLA-G expression on endometrial cells. IL-17A also promoted migration of endometrial cells. Our data suggest that Th17 cells and IL-17A play critical roles in the development of endometriosis by promoting endometrial cell survival and conferring a resistance to NK cell cytotoxicity through the activation of ERK1/2 signaling. Targeting IL-17A has potential as a new strategy for the treatment of endometriosis.