Algal genomics approaches provide a massive number of genome/transcriptome sequences and reveal the evolutionary history vis-à-vis primary and serial endosymbiosis events that contributed to the biodiversity of photosynthetic eukaryotes in the eukaryote tree of life. In particular, phylogenomic methods using several hundred or thousands of genes have provided new insights into algal taxonomy and systematics. Using this method, many novel insights into algal species diversity and systematics occurred, leading to taxonomic revisions. In addition, horizontal gene transfers (HGTs) of functional genes have been identified in algal genomes that played essential roles in environmental adaptation and genomic diversification. Finally, algal genomics data can be used to address the pangenome, including core genes shared among all isolates and partially shared strain-specific genes. However, some aspects of the pangenome concept (genome variability of intraspecies level) conflict with population genomics concepts, and the issue is closely related to defining species boundaries using genome variability. This review suggests a desirable future direction to merge algal pangenomics and population genomics beyond traditional molecular phylogeny and taxonomy.
다수의 서로 다른 해상도의 자료를 병합(Merge)하는 것은 강수 자료 사용에 중요한 절차 중 하나이다. 강수 자료는 다수의 소스(관측소, 레이더, 위성 등)에서 관측 자료를 제공한다. 연구자들은 각 원본 자료의 장점을 취하고 단점을 보완하기 위해 다중소스 기반의 재분석 강수 자료를 제작하여 사용하고 있다. 기존의 방법은 자료를 병합하기 위해 서로 다른 공간적 특성을 갖는 자료들을 공간적으로 동일한 위치로 보간(Interpolation) 하는 과정이 필요하다. 하지만 보간 절차는 원본자료에 인위적인 변형을 주기 때문에 많은 오차(Error)를 발생시키는 것으로 알려져 있다. 따라서 본 연구는 병합 과정에서 보간 절차를 제외하고 원본 해상도 자료를 그대로 입력하기 위해 머신 러닝 방법의 하나인 Super resolution convolutional neural network(SRCNN)에 기반한 병합 방법을 제안하고자 한다. 이 방법은 원본 자료의 영향을 모델이 직접 취사선택하여 최종 자료에 도달하기 때문에 병합 과정의 오류를 줄일 수 있을 것으로 기대된다.
Objectives: Since 1998, the Korea National Health and Nutrition Examination Survey (KNHANES) has been conducted in order to investigate the health and nutritional status of Koreans. The food intake data of individuals in the KNHANES has also been utilized as source dataset for risk assessment of chemicals via food. To improve the reliability of intake estimation and prevent missing data for less-responded foods, the structure of integrated long-standing datasets is significant. However, it is difficult to merge multi-year survey datasets due to ineffective cleaning processes for handling extensive numbers of codes for each food item along with changes in dietary habits over time. Therefore, this study aims at 1) cleaning the process of abnormal data 2) generation of integrated long-standing raw data, and 3) contributing to the production of consistent dietary exposure factors. Methods: Codebooks, the guideline book, and raw intake data from KNHANES V and VI were used for analysis. The violation of the primary key constraint and the $1^{st}-3rd$ normal form in relational database theory were tested for the codebook and the structure of the raw data, respectively. Afterwards, the cleaning process was executed for the raw data by using these integrated codes. Results: Duplication of key records and abnormality in table structures were observed. However, after adjusting according to the suggested method above, the codes were corrected and integrated codes were newly created. Finally, we were able to clean the raw data provided by respondents to the KNHANES survey. Conclusion: The results of this study will contribute to the integration of the multi-year datasets and help improve the data production system by clarifying, testing, and verifying the primary key, integrity of the code, and primitive data structure according to the database normalization theory in the national health data.
해양관측 정지궤도 위성인 GOCI(Geostationary Ocean Color Imager) 데이터는 대용량 산출물을 효과적으로 저장, 배포하기 위해 HDF5 자료 형식을 사용하고 있다. 해양위성센터에서는 HDF5(Hierarchical Data Format version5) 포맷에 익숙지 않은 일반 사용자를 위해 GDPS(GOCI Data Processing System)를 개발하여 관측자료와 함께 제공하고 있다. 그럼에도 불구하고 위성데이터 특성에 대한 이해와 GDPS의 사용법을 익혀야 하는 점, 그리고 위치정보와 속성정보가 분리되어 있는 HDF5 형식의 자료를 병합하고 가공하는 일은 쉽지 않은 일이다. 따라서 본 연구에서는 오픈소스 R과 rhdf5, data.table, matrixStats 패키지를 이용하여 GDPS를 이용하는 과정 없이도 HDF5 형식의 위성데이터를 손쉽게 활용할 수 있는 알고리즘을 개발하였다.
최근 플래시 메모리의 꾸준한 용량 증가와 가격 하락으로 인해 대용량 SSD(Solid State Drive)가 점차 대중화 되고 있다. 하지만, 플래시 메모리는 하드웨어적인 제약사항이 존재하며, 이러한 제약사항을 보완하기 위해 FTL(Flash Translation Layer)이라는 특별한 미들웨어 계층을 필요로 한다. FTL은 플래시 메모리의 하드웨어적인 제약사항을 효율적으로 운용하기 위해 필요한 계층으로서 파일 시스템으로부터의 논리적 섹터 번호(logical sector number)를 플래시 메모리의 물리적 섹터 번호(physical sector number)로 변환해주는 역할을 한다. 특히, 플래시 메모리의 여러 제약사항 중 "쓰기 전 지우기(erase-before-write)"는 플래시 메모리 성능 저하의 주요한 원인이 되고 있으며, 이와 관련하여 로그블록 기반의 여러 연구들이 활발히 진행되어 왔지만, 대용량의 플래시 메모리를 효율적으로 운용하기 위해서는 몇몇 문제점들이 존재한다. 로그블록 기반의 FAST는 넓은 지역에 임의쓰기(random writing)가 빈번하게 발생하면 데이터 블록 내 사용되지 않은 섹터들로 인해 효율적이지 못한 합병 연산이 발생한다. 즉, 효율적이지 못한 블록 쓰레싱(thrashing)이 빈번하게 발생하고, 플래시 메모리의 성능을 저하시킨다. 로그블록은 덮어쓰기(overwriting) 발생 시 일종의 캐쉬처럼 운영되며, 이러한 기법은 플래시 메모리 성능 향상에 많은 발전을 주었다. 본 연구에서는 임의쓰기에 대한 성능 향상을 위해 로그 블록만을 캐쉬처럼 운영하는 것이 아니라 플래시 메모리 전체를 캐쉬처럼 운용하고, 이를위해 별도의 오프셋이라는 매핑 테이블을 운용하여 플래시 메모리 성능 저하의 주요한 원인이 되는 합병연산과 삭제연산을 줄였다. 새로운 FTL은 XAST(eXtensively-Associative Sector Translation)이라 명명하며, XAST에서는 공간지역성과 시간지역성에 대한 기본적인 이론을 바탕으로 오프셋 매핑 테이블을 효율적으로 운용한다.
Internet of things (IoT) is a new paradigm for collecting, processing and analyzing various contents in order to detect anomalies and to monitor particular patterns in a specific environment. The collected data can be used to discover new patterns and to offer new insights. IoT-enabled data mashup is a new technology to combine various types of information from multiple sources into a single web service. Mashup services create a new horizon for different applications. Environmental monitoring is a serious tool for the state and private organizations, which are located in regions with environmental hazards and seek to gain insights to detect hazards and locate them clearly. These organizations may utilize IoT - enabled data mashup service to merge different types of datasets from different IoT sensor networks in order to leverage their data analytics performance and the accuracy of the predictions. This paper presents an IoT - enabled data mashup service, where the multimedia data is collected from the various IoT platforms, then fed into an environmental cognition service which executes different image processing techniques such as noise removal, segmentation, and feature extraction, in order to detect interesting patterns in hazardous areas. The noise present in the captured images is eliminated with the help of a noise removal and background subtraction processes. Markov based approach was utilized to segment the possible regions of interest. The viable features within each region were extracted using a multiresolution wavelet transform, then fed into a discriminative classifier to extract various patterns. Experimental results have shown an accurate detection performance and adequate processing time for the proposed approach. We also provide a data mashup scenario for an IoT-enabled environmental hazard detection service and experimentation results.
Purpose - The Chinese government's policies and funds enable specialized farmers cooperatives to develop vigorously. However, the non-systematic supervision system affects the interests of farmer-members of these cooperatives, which are similar to the Korean NongHyup in many aspects but differ in their supervision systems such as distribution. Therefore, this paper aims to identify the problems of specialized farmers cooperatives, and obtain some insights from NongHyup. Research design, data, and methodology - Data were collected from farmers, the government, and cooperatives in northern China's Shandong Province (the cities of Jinan, Qingdao, Weifang, Linyi, and Heze) through a literature survey, case analysis, and comparative analysis in each city. Results - 1) Specialized farmers cooperatives should establish a transparent regulatory mechanism and be subject to dual supervision from both the Chinese government and farmers. 2) The Chinese government and civil society should offer more support to the cooperatives, and strive to change farmers' backward attitude through education and training. Conclusions - Small cooperatives could merge into large ones and undertake social responsibility through the establishment of labor unions.
투영 클러스터링은 고 차원 데이타집합에서 서로 다른 부분공간들에서 클러스터들을 찾으려고 모색한다. 사용자가 출력 클러스터들의 개수와 투영 클러스터들의 부분공간의 평균 차원수를 지정하지 않아도, 거의 최적인 투영 클러스터들을 탐사해내는 알고리즘을 제안한다. 클러스터링의 각 단계에서 알고리즘의 목적 함수는 투영 에너지, 품질, 그리고 이상치들의 개수를 계산한다. 클러스터링에서 투영 에너지를 최소화하고 품질을 최대화하기 위하여, 전체 차원의 표준 편차들을 비교함으로 입력 점들의 밀도 상에서 각 클러스터의 최선의 부분영역을 찾기 시작한다. 부분공간의 각 차원에 대한 가중치 요소가 투영 거리 측정에서 확률 오차를 없애기 위하여 사용된다. 제안된 알고리즘이 투영 클러스터들을 정확하게 발견해내고 대 용량의 데이타 집합에서 비례확장성을 갖는다는 것을 여러 가지 실험으로 보여준다.
최근 급격히 발전된 컴퓨터 기술에 힘입어 다양한 분야에서의 멀티미디어 데이터 처리가 가능하게 되었다. 그러나, 기존의 디스크 저장 시스템으로 멀티미디어의 특징을 수용하기에는 무리가 있다. 현재, 몇몇의 연구에서 멀티미디어 저장에 관한 향상된 기술을 소개하였고, 그 중 Bocheck는 엑세스 주기와 단위가 동일한 다중스트림의 분할 저장 기법을 제안하였으나, 서로 상이한 주기를 갖는 연속 미디어의 스트림에 관해서는 고려되지 않았다. 이 논문에서는 조회 주기가 서로 상이한 스트림을 고정된 몇 개의 블록으로 할당하는 방안을 제안하고 주어진 다중스트림을 m개의 시퀀스로 스케줄링시 그 가능성을 분석하였으며, 기존의 Scan-EDF와 디스크 분할 저장 방식과 비교하기 위해서 시뮬레이션을 행하였다.
본 논문은 효율적인 영상 분할을 수행하기 위한 다중해상도와 동적인 성질을 가지고 있는 새로운 EM 알고리즘을 제안한다. EM 알고리즘은 가장 많이 사용되고 성능이 우수한 클러스터링 방법이다. 그러나, 기존의 EM 알고리즘은 다중해상도 데이터 처리에 대한 문제점과 클러스터 개수에 대한 사전 지식 요구라는 단점을 가지고 있다. 본 논문에서는 이러한 문제점을 해결하기 위해서 E-단계에 다중해상도 kd-트리를 적용함으로써 다중해상도 데이터 처리 문제를 해결하였고, 순차적 데이터에 따라 클러스터를 할당할 수 있데 하였다. 클러스터의 유효성을 검사하기 위해서, 클러스터 병합 원칙을 이용한다. 본 논문에서는 제안하는 알고리즘을 텍스쳐 영상 분할에 적용하였고, 우수한 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.