• Title/Summary/Keyword: Data Matrix

Search Result 2,901, Processing Time 0.03 seconds

Algorithm of Converged Corner Detection-based Segmentation in the Data Matrix Barcode (코너 검출 기반의 융합형 Data Matrix 바코드 분할 알고리즘)

  • Han, Hee-June;Lee, Jong-Yun
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.1
    • /
    • pp.7-16
    • /
    • 2015
  • A segmentation process extracts an interesting area of barcode in an image and gives a crucial impart on the performance of barcode verifier. Previous segmentation methods occurs some issues as follows. First, it is very hard to determine a threshold of length in Hough Line transform because it is sensitive. Second, Morphology transform delays the process when you conduct dilation and erosion operations during the image extraction. Therefore, we proposes a novel Converged Harris Corner detection-based segmentation method to detect an interesting area of barcode in Data Matrix. In order to evaluate the performance of proposed method, we conduct experiments by a dataset of barcode in accordance with size and location in an image. In result, our method solves the problems of delay and surrounding environments, threshold setting, and extracts the barcode area 100% from test images.

Explicit Matrix Expressions of Progressive Iterative Approximation

  • Chen, Jie;Wang, Guo-Jin
    • International Journal of CAD/CAM
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Just by adjusting the control points iteratively, progressive iterative approximation (PIA) presents an intuitive and straightforward scheme such that the resulting limit curve (surface) can interpolate the original data points. In order to obtain more flexibility, adjusting only a subset of the control points, a new method called local progressive iterative approximation (LPIA) has also been proposed. But to this day, there are two problems about PIA and LPIA: (1) Only an approximation process is discussed, but the accurate convergence curves (surfaces) are not given. (2) In order to obtain an interpolating curve (surface) with high accuracy, recursion computations are needed time after time, which result in a large workload. To overcome these limitations, this paper gives an explicit matrix expression of the control points of the limit curve (surface) by the PIA or LPIA method, and proves that the column vector consisting of the control points of the PIA's limit curve (or surface) can be obtained by multiplying the column vector consisting of the original data points on the left by the inverse matrix of the collocation matrix (or the Kronecker product of the collocation matrices in two direction) of the blending basis at the parametric values chosen by the original data points. Analogously, the control points of the LPIA's limit curve (or surface) can also be calculated by one-step. Furthermore, the $G^1$ joining conditions between two adjacent limit curves obtained from two neighboring data points sets are derived. Finally, a simple LPIA method is given to make the given tangential conditions at the endpoints can be satisfied by the limit curve.

The Importance and Performance Analysis for the Development of Endurance Nursing Education Program : Focusing on Hospice Teams (임종돌봄 수행 프로그램 개발을 위한 교육요구도 분석 : 호스피스팀원을 중심으로)

  • Jang, Sun-Hee;Jang, Eun-Sil
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.288-297
    • /
    • 2021
  • The purpose of this study was to provide basic data for the development of end-of-life care program by analyzing the importance and performance of end-of-life care. Data were collected from 127 hospice team members currently working in hospice and palliative care units from six different university hospitals, general hospitals and hospice clinics. The data was collected throughout the time span of Dec. 1, 2020 to Feb. 15, 2021. Data were analyzed using descriptive statistics, t-tests, ANOVA, & IPA matrix. As a result of this study, 'physical care' and 'psychological care' were part of the first quadrant that requires maintenance and continuous enhancement. The 'spiritual care' appeared to be in the third quadrant area which entails long-term improvement. Based on the outcome of the study, it is evident that strategies are needed to continuously maintain and enhance physical and psychological care as well establish long-term plans for spiritual care when organizing the hospice team's end-of-life care performance training program.

Time-dependent and inelastic behaviors of fiber- and particle hybrid composites

  • Kim, Jeong-Sik;Muliana, Anastasia
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.525-539
    • /
    • 2010
  • Polymer matrix composites are widely used in many engineering applications as they can be customized to meet a desired performance while not only maintaining low cost but also reducing weight. Polymers can experience viscoelastic-viscoplastic response when subjected to external loadings. Various reinforcements and fillers are added to polymers which bring out more complexity in analyzing the timedependent response. This study formulates an integrated micromechanical model and finite element (FE) analysis for predicting effective viscoelastic-viscoplastic response of polymer based hybrid composites. The studied hybrid system consists of unidirectional short-fiber reinforcements and a matrix system which is composed of solid spherical particle fillers dispersed in a homogeneous polymer constituent. The goal is to predict effective performance of hybrid systems having different compositions and properties of the fiber, particle, and matrix constituents. A combined Schapery's viscoelastic integral model and Valanis's endochronic viscoplastic model is used for the polymer constituent. The particle and fiber constituents are assumed linear elastic. A previously developed micromechanical model of particle reinforced composite is first used to obtain effective mechanical properties of the matrix systems. The effective properties of the matrix are then integrated to a unit-cell model of short-fiber reinforced composites, which is generated using the FE. The effective properties of the matrix are implemented using a user material subroutine in the FE framework. Limited experimental data and analytical solutions available in the literatures are used for comparisons.

A Study on Reliability Evaluation and Improvement Process of Aerospace Electronic Equipments using Operational Reliability-Cost Matrix (신뢰성-비용 매트릭스를 이용한 항공전자장비의 신뢰성 평가 및 개선 프로세스 연구)

  • Jo, In-Tak;Lee, Sang-Cheon;Park, Jong-Hun;Bae, Sung-Moon
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.4
    • /
    • pp.633-646
    • /
    • 2014
  • Purpose: The conventional predicted MFTBF by military standard has a wide discrepancy to that of real-world operation, which leads to overstock and increase operation cost. This paper introduces a analyzing frame using operational reliability and cost data to overcome the discrepancy, and provides reliability improvement process employing the analyzing frame. Methods: This paper suggests Reliability-Cost Matrix (R-C Matrix) and Operational Reliability & Cost Index (ORCI) as a tool for reliability evaluation. Results: KOREIP(KAI's Operational Reliability Evaluation and Improvement Process) is developed employing Reliability-Cost Matrix and Operational Reliability & Cost Index. Conclusion: KOREIP provides a process and its activities based on Reliability-Cost Matrix frame. The process and activities leads reliability improvement of aerospace electronic equipments by means of categorizing and follow-up action based on the concept of frame.

Analysis of Fashion Phenomenon in Casual Wear Market Applying Brand Switching Matrix (브랜드 전환 매트릭스를 적용한 캐주얼웨어 시장의 유행 현상 분석)

  • Chung, Inn-Hee;Kim, Sang-Yoan
    • The Research Journal of the Costume Culture
    • /
    • v.15 no.3 s.68
    • /
    • pp.525-540
    • /
    • 2007
  • This study intended to construct the brand switching matrix in the Korean casual wear market and to analyze it in various aspects. 1,014 sample data were collected in Seoul area, a center of fashion retailing. Since the respondents cited over 200 brand names as their last 2 purchased casual wear brands, 15 most frequently-purchased brands were selected for constructing the brand switching matrix. As a result of the examination, it was founded that the brand loyalty was dominant rather than brand switching in the casual wear market. Polo was identified as the leading brand in the market. Its brand equity, which was comprised of brand recognition, brand preference (loyalty), perceived quality, and brand association, was evaluated very high. Especially, the strength of Polo was the consumer's strong preference and the brand image of simplicity, naturalness, and neatness. After combining 15 brands into 6 groups based on the style and price, additional interpretation was performed on this 'trend switching matrix.' A transition of fashion trend in casual wear was observed. Applying the brand switching matrix on fashion products gave us much insight to the market.

  • PDF

A Symbolic Manipulation Computer Program for Structural Analysis (구조해석(構造解析)을 위한 Symbolic Manipulation Program)

  • Shim, Jae Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.95-107
    • /
    • 1983
  • The general purpose programs are in their fixed algorithm and theory of mechanics which can not be altered without painful program modifications. Users are usually guided by user's manual for data input. The several symbolic manipulation programs for structural analysis are introduced recently. These programs allow users to include a wide class of solution algorithm and to specify, by means of some symbolic manipulation, a combination of analytical steps to suit a particular problem. As they can solve a single domain problem, a large computer is usually needed. The scope of this study is to develop an efficient symbolic manipulation program with space beam element, plate bending element and eigen value routines. The incorporated Substructure capability and generation capability of finite element characteristic arrays (e.g., stiffness matrix, mass matrix) enables users to analyse multidomain problem with small computer. The program consists of modulized independent processors, each having its own specific function and is easily modified, eliminated and added. The processors are efficiently handling data by the Data base approach which is the concept of integrated program network(IPN).

  • PDF

Data-based Stability Analysis for MIMO Linear Time-invariant Discrete-time Systems

  • Park, Un-Sik;Ikeda, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.680-684
    • /
    • 2005
  • This paper presents a data-based stability analysis of a MIMO linear time-invariant discrete-time system, as an extension of the previous results for a SISO system. In the MIMO case, a similar discussion as in the case of a SISO system is also applied, except that an augmented input and output space is considered whose dimension is determined in relation to both the orders of the input and output vectors and the numbers of inputs and outputs. As certain subspaces of the input and output space, both output data space and closed-loop data space are defined, which contain all the behaviors of a system, respectively, with zero input in open-loop and with a control input in closed-loop. Then, we can derive the data-based stability conditions, in which the open-loop stability can be checked by using a data matrix whose column vectors span the output data space and the closed-loop stability can also be checked by using a data matrix whose column vectors span the closed-loop data space.

  • PDF

A Differential Privacy Approach to Preserve GWAS Data Sharing based on A Game Theoretic Perspective

  • Yan, Jun;Han, Ziwei;Zhou, Yihui;Lu, Laifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.1028-1046
    • /
    • 2022
  • Genome-wide association studies (GWAS) aim to find the significant genetic variants for common complex disease. However, genotype data has privacy information such as disease status and identity, which make data sharing and research difficult. Differential privacy is widely used in the privacy protection of data sharing. The current differential privacy approach in GWAS pays no attention to raw data but to statistical data, and doesn't achieve equilibrium between utility and privacy, so that data sharing is hindered and it hampers the development of genomics. To share data more securely, we propose a differential privacy preserving approach of data sharing for GWAS, and achieve the equilibrium between privacy and data utility. Firstly, a reasonable disturbance interval for the genotype is calculated based on the expected utility. Secondly, based on the interval, we get the Nash equilibrium point between utility and privacy. Finally, based on the equilibrium point, the original genotype matrix is perturbed with differential privacy, and the corresponding random genotype matrix is obtained. We theoretically and experimentally show that the method satisfies expected privacy protection and utility. This method provides engineering guidance for protecting GWAS data privacy.

Deducing Isoform Abundance from Exon Junction Microarray

  • Kim Po-Ra;Oh S.-June;Lee Sang-Hyuk
    • Genomics & Informatics
    • /
    • v.4 no.1
    • /
    • pp.33-39
    • /
    • 2006
  • Alternative splicing (AS) is an important mechanism of producing transcriptome diversity and microarray techniques are being used increasingly to monitor the splice variants. There exist three types of microarrays interrogating AS events-junction, exon, and tiling arrays. Junction probes have the advantage of monitoring the splice site directly. Johnson et al., performed a genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays (Science 302:2141-2144, 2003), which monitored splicing at every known exon-exon junctions for more than 10,000 multi-exon human genes in 52 tissues and cell lines. Here, we describe an algorithm to deduce the relative concentration of isoforms from the junction array data. Non-negative Matrix Factorization (NMF) is applied to obtain the transcript structure inferred from the expression data. Then we choose the transcript models consistent with the ECgene model of alternative splicing which is based on mRNA and EST alignment. The probe-transcript matrix is constructed using the NMF-consistent ECgene transcripts, and the isoform abundance is deduced from the non-negative least squares (NNLS) fitting of experimental data. Our method can be easily extended to other types of microarrays with exon or junction probes.