• Title/Summary/Keyword: Data Matrix

Search Result 2,896, Processing Time 0.028 seconds

Optimal Condition of Natural Silk 3D Matrix Production by Silkworm Spinning

  • Bae, Sung Min;Kweon, HaeYong;Jo, You-Young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.35 no.2
    • /
    • pp.83-88
    • /
    • 2017
  • Silk is appealing materials for many biomedical applications involving tissue engineering and implantable devices, because of its biocompatibility, environmental stability, controlled proteolytic biodegradability and morphologic flexibility. Silk matrix is required for the treatment of a wide wound area, but the present silk matrix is made by the second processing, and thus, the labor and the cost are high. In this work, we investigated the optimal production condition of natural silk 3D matrix using the silkworms and invented Automatic Silk Matrix Making Machine (ASMMM) for natural silk 3D matrix production. As a result, we determined that optimal production condition for making A4 paper size natural silk 3D matrix was used Rough aquarelle paper on surface at $25^{\circ}C$ and 30 silkworm larvae. These results are expected to provide basic data for the efficient production of the natural silk 3D matrix, and it is suggested that the produced natural silk 3D matrix is useful as a medical biomaterials.

Comparison of deep learning-based autoencoders for recommender systems (오토인코더를 이용한 딥러닝 기반 추천시스템 모형의 비교 연구)

  • Lee, Hyo Jin;Jung, Yoonsuh
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.329-345
    • /
    • 2021
  • Recommender systems use data from customers to suggest personalized products. The recommender systems can be categorized into three cases; collaborative filtering, contents-based filtering, and hybrid recommender system that combines the first two filtering methods. In this work, we introduce and compare deep learning-based recommender system using autoencoder. Autoencoder is an unsupervised deep learning that can effective solve the problem of sparsity in the data matrix. Five versions of autoencoder-based deep learning models are compared via three real data sets. The first three methods are collaborative filtering and the others are hybrid methods. The data sets are composed of customers' ratings having integer values from one to five. The three data sets are sparse data matrix with many zeroes due to non-responses.

Covariance Matrix Estimation with Small STAP Data through Conversion into Spatial Frequency-Doppler Plane (적은 STAP 데이터의 공간주파수-도플러 평면 변환을 이용한 공분산행렬 추정)

  • Hoon-Gee Yang
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.38-44
    • /
    • 2023
  • Performance of a STAP(space-time adaptive processing) algorithm highly depends on how closely the estimated covariance matrix(CM) resembles the actual CM by the interference in CUT(cell under test). A STAP has 2 dimensional data structure determined by the number of array elements and the number of transmitting pulses and both numbers are generally not small. Thus, to meet the degree of freedom(DOF) of the CM, a huge amount of training data is required. This paper presents an algorithm to generate virtual training data from small received data, via converting them into the data in spatial frequency-Doppler plane. We theoretically derive where the clutter exist in the plane and present the procedure to implement the proposed algorithm. Finally, with the simulated scenario of small received data, we show the proposed algorithm can improve STAP performance.

Dual Image Reversible Data Hiding Scheme Based on Secret Sharing to Increase Secret Data Embedding Capacity (비밀자료 삽입용량을 증가시키기 위한 비밀 공유 기반의 이중 이미지 가역 정보은닉 기법)

  • Kim, Pyung Han;Ryu, Kwan-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1291-1306
    • /
    • 2022
  • The dual image-based reversible data hiding scheme embeds secret data into two images to increase the embedding capacity of secret data. The dual image-based reversible data hiding scheme can transmit a lot of secret data. Therefore, various schemes have been proposed until recently. In 2021, Chen and Hong proposed a dual image-based reversible data hiding scheme that embeds a large amount of secret data using a reference matrix, secret data, and bit values. However, in this paper, more secret data can be embedded than Chen and Hong's scheme. To achieve this goal, the proposed scheme generates polynomials and shared values using secret sharing scheme, and embeds secret data using reference matrix and septenary number, and random value. Experimental results show that the proposed scheme can transmit more secret data to the receiver while maintaining the image quality similar to other dual image-based reversible data hiding schemes.

Implementing Data Envelopment Analysis Using SAS$^{\circledR}$ (SAS$^{\circledR}$를 활용한 자료포락분석의 실행)

  • 김성호;최태성
    • Korean Management Science Review
    • /
    • v.17 no.2
    • /
    • pp.161-174
    • /
    • 2000
  • This paper provides an implementation of data envelopment analysis (DEA) developed by Charnes et al. using SAS. Since a flexible interactive matrix language SAS/IML included in the SAS has a syntax similar with the matrix algebra, one can easily create and understand SAS/IML code for DEA. In this paper, a simple SAS/IML code for DEA and its illustrative implementation with an input-output data set of 25 American private university research libraries are provided.

  • PDF

Motion Analysis of Two Floating Platforms with Mooring and Hawser Lines in Tandem Moored Operation by Combined Matrix Method and Separated Matrix Method

  • KOO BON-JUN;KIM MOO-HYUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.1-15
    • /
    • 2005
  • The motion behaviors including hydrodynamic interaction and mechanical coupling effects on multiple-body floating platforms are simulated by using a time domain hull/mooring/riser coupled dynamics analysis program. The objective of this study is to evaluate off-diagonal hydrodynamic interaction effects and mechanical coupling effects on tandem moored FPSO and shuttle taker motions. In the multiple-body floating platforms interaction, hydrodynamic coupling effects with waves and mechanical coupling effects through the connectors should be considered. Thus, in this study, the multiple-body platform motions are calculated by Combined Matrix Method (CMM) as well as Separated Matrix Method (SMM). The advantage of the combined matrix method is that it can include all the 6Nx6N full hydrodynamic and mechanical interaction effects among N bodies. Whereas, due to the larger matrix size, the calculation time of Combined Matrix Method (CMM) is longer than the Separated Matrix Method (SMM). On the other hand, Separated Matrix Method (SMM) cannot include the off-diagonal 6x6 hydrodynamic interaction coefficients although it can fully include mechanical interactions among N bodies. To evaluate hydrodynamic interaction and mechanical coupling effects, tandem moored FPSO and shuttle tanker is simulated by Combined Matrix Method (CMM) and Separated Matrix Method (SMM). The calculation results give a good agreement between Combined Matrix Method (CMM) and Separated Matrix Method (SMM). The results show that the Separated Matrix Method (SMM) is more efficient for tandem moored FPSO and shuttle tanker. In the numerical calculation, the hydrodynamic coefficients are calculated from a 3D diffraction/radiation panel program WAMIT, and wind and current forces are generated by using the respective coefficients given in the OCIMF data sheet.

Estimating Three-Dimensional Scattering Centers of a Target Using the 3D MEMP Method in Radar Target Recognition (레이다 표적 인식에서 3D MEMP 기법을 이용한 표적의 3차원 산란점 예측)

  • Shin, Seung-Yong;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.130-137
    • /
    • 2008
  • This paper presents high resolution techniques of three-dimensional(3D) scattering center extraction for a radar backscattered signal in radar target recognition. We propose a 3D pairing procedure, a new approach to estimate 3D scattering centers. This pairing procedure is more accurate and robust than the general criterion. 3D MEMP(Matrix Enhancement and Matrix Pencil) with the 3D pairing procedure first creates an autocorrelation matrix from radar backscattered field data samples. A matrix pencil method is then used to extract 3D scattering centers from the principal eigenvectors of the autocorrelation matrix. An autocorrelation matrix is constructed by the MSSP(modified spatial smoothing preprocessing) method. The observation matrix required for estimation of 3D scattering center locations is built using the sparse scanning order conception. In order to demonstrate the performance of the proposed technique, we use backscattered field data generated by ideal point scatterers.

CsX+ SNMS의 Matrix Effect 감소연구

  • 문환구;김동원;한철현;김영남;심태언
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1992.02a
    • /
    • pp.17-18
    • /
    • 1992
  • SIMS is an indispensable surface analysis instrument in trace element depth p profiling because of high detection sensitivity and excellent depth r resolution, however, it requires standard sample to do quantitative analysis d due to matrix effect depending on the species of impurities and sample m matricies and on the sputtering rates. A Among the SNMS technology developed to supply the deficiency, we researched i into CsX+ SNMS which improved the resul t quanti tati vely wi thout any extra epuipments. So basic SNMS functions were confirmed through matrix element composition rate a analysis using Si02 layer etc. and adaptability to trace element c concentration analysis was tried. For that purpose we compared SIMS depth profile data for Boron which presented s strong matrix effect on account of Fluorin existence after BF2 ion implantation on silicon substrate with SNMS data. d dynamic range were investigated. A After these experements we concluded that CsX+ SNMS reduced matrix effect and we could apply it to profile impurity elements.

  • PDF

Basic Study on the Regenerator of Stilting Engine (II) - Heat transfer and flow friction loss characteristics of the regenerator with wire screen matrix - (스털링기관용 재생기에 관한 기초연구 (II) - 철망을 축열재로 한 재생기의 전열 및 유동손실특성 -)

  • 김태한;이시민;이정택
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.529-536
    • /
    • 2002
  • The performance of stilting engine, in particular, its energy conversion efficiencies are critically influenced by the regenerator characteristics. The regenerator characteristics are influenced by effectiveness, void fraction. heat transfer loss and fluid friction loss in the regenerator matrix. These factors were influenced by the surface geometry and material properties of the regenerator matrix. The regenerator design goals arc good heat transfer and low pressure drop of working Bas across the regenerator. Various data for designing a wire screen matrix have been given by Kays and London(1984). The mesh number of their experiment. however, was confined below the No. 60. which seems rather small for the Stirling engine applications. In this paper. in order to provide a basic data for the design of regenerator matrix, characteristics of heat transfer and flow friction loss were investigated by a packed mettled of matrix in oscillating flow as the same condition of operation in a Stirling engine. Seven kinds of sing1e wire screen meshes were used as the regenerator matrices. The results are summarized as follows; 1. While the working fluid flew slowly in the regenerator. the temperature difference was great at the both hot-blow(the working fluid flows from healer to cooler) and cold-blow(the working fluid flows from cooler to healer). On the other hand. while the working fluid flew fast. the temperature difference was not distinguished. 2. The No.150 wire screen used as the regenerator matrix showed excellent performance than tile others. 3. Phase angle variation and filling rate affected heat transfer or regenerator matrices. 4. Temperature difference between the inlet and outlet of the regenerator is very hish in degree of 120 phase angle.

Outsourced Storage Auditing Scheme using Coefficient Matrix (계수행렬을 이용한 외부 스토리지 무결성 검증 기법)

  • Eun, Hasoo;Oh, Heekuck;Kim, Sangjin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.11
    • /
    • pp.483-488
    • /
    • 2013
  • Users can access their data anywhere, at any time by using outsourced storage. But they cannot know how service provider manage the data. Even user cannot know when data damaged. To solve these problems, the outsourced storage auditing schemes has been proposed. Most proposed schemes are based on Homomorphic Verifiable Tags. But it has computational efficiency limitation because data used to exponent. In this paper, we propose a novel approach to outsourced storage auditing scheme using coefficient matrix. In the proposed scheme, data used to auditing by coefficient matrix form. Auditing procedures are proceed as solving the linear simultaneous equation. The auditor can audit easily by solving the equation using solution vector. The auditor can audit the n size data using sqrt(n) size data through out proposed scheme.