In this paper, we propose a deep auto-encoder-based pipe leak detection (PLD) technique from time-series acoustic data collected by microphone sensor nodes. The key idea of the proposed technique is to learn representative features of the leak-free state using leak-free time-series acoustic data and the deep auto-encoder. The proposed technique can be used to create a PLD model that detects leaks in the pipeline in an unsupervised learning manner. This means that we only use leak-free data without labeling while training the deep auto-encoder. In addition, when compared to the previous supervised learning-based PLD method that uses image features, this technique does not require complex preprocessing of time-series acoustic data owing to the unsupervised feature extraction scheme. The experimental results show that the proposed PLD method using the deep auto-encoder can provide reliable PLD accuracy even considering unsupervised learning-based feature extraction.
오늘날 인공지능 산업이 발전함에 따라 여러 분야에 걸쳐 인공지능을 통한 자동화 및 최적화가 이루어지고 있다. 국내의 철도 분야 또한 지도 학습을 이용한 레일의 결함을 검출하는 연구들을 확인할 수 있다. 그러나 철도에는 레일만이 아닌 다른 구조물들이 존재하며 그중 선로 체결 장치는 레일을 다른 구조물에 결합시켜주는 역할을 하는 장치로 안전사고의 예방을 위해서 주기적인 점검이 필요하다. 본 논문에는 선로 체결 장치의 데이터를 이용하여 준지도 학습(semi-supervised learning)과 전이 학습(transfer learning)을 이용한 분류기를 학습시켜 선로 안전 점검에 사용되는 비용을 줄이는 방안을 제안한다. 사용된 네트워크는 Resnet50이며 imagenet으로 선행 학습된 모델이다. 레이블이 없는 데이터에서 무작위로 데이터를 선정 후 레이블을 부여한 뒤 이를 통해 모델을 학습한다. 학습된 모델의 이용하여 남은 데이터를 예측 후 예측한 데이터 중 클래스 별 확률이 가장 높은 데이터를 정해진 크기만큼 훈련용 데이터에 추가하는 방식을 채택하였다. 추가적으로 초기의 레이블된 데이터의 크기가 끼치는 영향력을 확인해보기 위한 실험을 진행하였다. 실험 결과 최대 92%의 정확도를 얻을 수 있었으며 이는 지도 학습 대비 5% 내외의 성능 차이를 가진다. 이는 제안한 방안을 통해 추가적인 레이블링 과정 없이 비교적 적은 레이블을 이용하여 분류기의 성능을 기존보다 향상시킬 수 있을 것으로 예상된다.
The purpose of this study is to establish the one serving size of Korean Processed Food. Defining the one serving size is very important for nutrition labeling and foodservice operation, because the one serving size is used to set up a proper portion by each foodservice operation. The basic data of 200 items were collected through three methods. Searching many cookbooks, exploring the commercial and noncommercial foodservices -6 industrial foodservices, 100 nationwide elementary school foodservice recipes analysis, and 3 hospital foodservice systems as the samples - moreover, experimental cooking and sensory evaluation by trained panels were conducted to assess quantity preference of selected food items. All data were rearranged through food type, that is, main dish, side dish, dessert and health food. One serving sizes of processed foods showed wide variety according to the different menus that include selected food items. Therefore, means and ranges of serving size by three research methods were presented item by item. The results obtained were: 1. The Korean Processed Foods were dried and sugar adding and soused foods, and many of them used the natual processing methods. 2. There were wide varieties in the classification of main dishes, but many of them were cereals, noodles, and sugar products. One serving size of noodles were around $50{\sim}100\;g$, cereals were $20{\sim}40\;g$, which means the one serving size can be differenciated by the food usage. 3. According to the Food classification of side dishes, many of them were as following; natural dried foods, processed fish products, salted or sugar added foods, seasoned foods and sugar products. Moreover the Types of cooking in side dishes were almost culinary vegetables, teas, health foods and condiments, and soused fish products. 4. About desserts, they were almost teas and sugars, and the Types of cooking were teas, health foods and seasonings. 5. We can conclude that almost Korean Processed foods used the drying and soused processing methods for long-time preservation, but it can make the higher content of any special elements, such as sodium or carbohydrates.
본 논문에서는 트레이닝 데이터가 제한된 환경에서 n-gram 사전을 이용하여 불건전 정보를 포함하는 스팸 트윗을 탐지하는 방법을 제안한다. 불건전 정보를 포함하는 스팸 트윗은 유사한 단어와 문장을 사용하는 경향이 있다. 이러한 특성을 이용하여 스팸 트윗과 정상 트윗에 대한 n-gram 사전을 구축하고 나이브 베이스 분류기를 적용하여 효과적으로 스팸 트윗을 탐지할 수 있음을 보인다. 반면에, 실시간으로 대용량의 데이터가 유입되는 트위터의 특성은 초기 트레이닝 집합 구성에 매우 큰 비용을 요구 한다. 따라서, 초기 트레이닝 집합이 매우 작거나 존재하지 않는 환경에서 적용할 수 있는 스팸 트윗 탐지 방법이 필요하다. 이를 위해 트위터의 리트윗 기능을 활용하여 의사 라벨을 생성하고 초기 트레이닝 집합의 구성과 n-gram 사전 업데이트에 활용하는 방법을 제안한다. 2016년 12월 1일부터 2016년 12월 7일까지 수집된 한국어 트윗 130만 건을 사용한 다양한 실험 결과는 비교 방법들보다 제안하는 방법의 성능이 우수함을 입증한다.
The use of chemical products to enhance and improve life is a widespread practice worldwide. But alongside the benefits of these products, there is also the potential for adverse effects to people or the environment. As a result, a number of countries or organizations have developed laws or regulations over the years that require information to be prepared and transmitted to those using chemicals, through labels or Material Safety Data Sheets (MSDS). While these existing laws or regulations are similar in many respects, their differences are significant enough to result in different labels or MSDS for the same product in different countries. Given the reality of the extensive global trade in chemicals, and the need to develop national programs to ensure their safe use, transport, and disposal, it was recognized that a Globally harmonization system of classification and labeling of chemicals(GHS) would provide the foundation for such programs. This study offered complementary details of GHS classification criteria adopted in Korea by analyzing the differences in chemical classification system between UN and Korea Ministry of Labor. Also it is proposed that mutual agreement of information DB used is required by comparing classification results of chemicals in Korea, Japan, and EU. We offered the lists of information sources useful for chemical classification.
본 연구는 간호대학신입생의 정서인식, 정서표현, 정서표현양면성과 대학생활적응을 확인하고 대학생활 적응에 영향을 미치는 요인을 파악하고자 수행되었다. 연구대상은 4년제 대학 2곳에 재학 중인 간호학과 신입생 159명이었고, 구조화된 설문지를 이용하여 2012년 5월 20일부터 6월10일까지 자료조사를 실시하였다. 대학생활적응은 정서주의와 정서명명과는 유의미한 양의 상관관계를 보였고, 긍정표현에 대한 양면성과 부정표현에 대한 양면성과는 유의미한 음의 상관관계를 나타냈다. 대학생활적응에 가장 큰 영향을 미치는 요인은 정서주의였으며, 정서주의, 긍정표현에 대한 양면성, 부정표현에 대한 양면성, 정서명명은 대학생활 적응에 대해 31.8%의 설명력을 나타내었다. 간호대학신입생의 대학생활적응 향상을 위해서 정서인식 및 정서표현양면성을 돕는 교육 프로그램의 개발이 필요하다.
본 논문에서는 비등속 이동물체의 표면 검사를 위한 3차원 표면 모델링(modeling) 기법을 제안하였다. 레이저 라인을 물체에 조사하면 표면의 굴곡에 따라 라인에 휨 현상이 나타난다. 이를 분석하여 물체 표면에 대한 3차원 정보를 획득 할 수 있다. 기존의 단일 라인(single stripe) 기법의 정확성과 단일 프레임(single frame) 기법의 빠른 복원 속도의 장점을 모두 활용하기 위하여 멀티 레이저 라인 투사기법을 이용하였다. 정확한 레이저 라인의 추출을 위하여 이진화 및 채널별 에지 검출 기법을 소개하였고, 효과적인 레이저 각 라인의 라벨링 기법을 새로 제안하였다. 개별 3차원 복원 표면을 전체영상으로 합성하기 위해 영상간 특징점 매칭(matching)을 활용하여 동기화 정보를 획득하고 영상을 정합하였다. 본 알고리듬을 컨테이너 표면 데미지 검사에 활용하여 제안한 3차원 모델링 기술의 우수성을 확인하였다.
본 논문에서는 비젼 카메라를 이용한 비주얼 멀티 터치 입력 장치를 제안한다. 제안된 입력 장치는 비젼 카메라를 이용하므로 기존 스마트 폰에서 사용하는 터치 스크린 입력 장치에 비해 non-touch로 명령을 입력할 수 있다는 장점이 있다. 또한, 제안된 장치는 컴퓨터 계산 시간이 짧아 실시간 구현이 가능하고, 카메라외에 다른 장치가 필요 없으므로 존재하는 입력장치보다 싸다는 장점이 있다. 이를 위해, 먼저, HSV 컬러 모델과 라벨링 방법을 이용한 영상 처리 알고리즘을 제안한다. 그 다음, 손이 움직이는 영역의 정확성을 개선하기위해, 기하학적인 특징점, 동심원, 칼만 필터에 기본한 움직임 인식 알고리즘을 제안한다. 마지막으로, 제안된 장치는 비디오 게임, 스마트 TV, 컴퓨터등을 원격으로 제어할 수 있음을 실험을 통해 보인다.
Background: Diseases related to cerebrospinal fluid flow, such as hydrocephalus, syringomyelia, and Chiari malformation, are often found in small dogs. Although studies in human medicine have revealed a correlation with cerebrospinal fluid flow in these diseases by magnetic resonance imaging, there is little information and no standard data for normal dogs. Objectives: The purpose of this study was to obtain cerebrospinal fluid flow velocity data from the cerebral aqueduct and subarachnoid space at the foramen magnum in healthy beagle dogs. Methods: Six healthy beagle dogs were used in this experimental study. The dogs underwent phase-contrast and time-spatial labeling inversion pulse magnetic resonance imaging. Flow rate variations in the cerebrospinal fluid were observed using sagittal time-spatial labeling inversion pulse images. The pattern and velocity of cerebrospinal fluid flow were assessed using phase-contrast magnetic resonance imaging within the subarachnoid space at the foramen magnum level and the cerebral aqueduct. Results: In the ventral aspect of the subarachnoid space and cerebral aqueduct, the cerebrospinal fluid was characterized by a bidirectional flow throughout the cardiac cycle. The mean ± SD peak velocities through the ventral and dorsal aspects of the subarachnoid space and the cerebral aqueduct were 1.39 ± 0.13, 0.32 ± 0.12, and 0.76 ± 0.43 cm/s, respectively. Conclusions: Noninvasive visualization of cerebrospinal fluid flow movement with magnetic resonance imaging was feasible, and a reference dataset of cerebrospinal fluid flow peak velocities was obtained through the cervical subarachnoid space and cerebral aqueduct in healthy dogs.
본 연구의 목적은 요양병원에서 발생할 수 있는 노인안전사고 발생률을 감소시키는 것이다. 즉, 위험지역으로 접근하는 인물이 노인(환자복) 그룹인지 실무자(평상복) 그룹인지를 CCTV에 나타나는 의복을 기준으로 구별하는 것이다. Web Crawling기법과 요양병원으로부터 지원을 받아 기초 데이터를 수집하였다. 이후 Image Generator와 Labeling으로 모델 학습 데이터를 만들었다. CCTV의 제한된 성능 때문에 높은 정확도와 속도를 모두 갖춘 모델을 만드는 것은 어려웠다. 그러므로 정확성이 상대적으로 우수한 ResNet 모델, 속도에서 상대적으로 우수한 YOLO3 모델을 각각 구현했다. 그리고 요양병원이 자신의 실정에 맞는 모델을 고를 수 있게 하고자 했다. 연구 결과 환자복과 평상복을 적절한 정확도로 구별할 수 있는 모델을 구현하였다. 따라서 실제 사용처에서 노인들이 위험구역에 접근하지 못하도록 하여 요양병원 안전사고 감소에 이바지 할 것으로 평가된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.