• 제목/요약/키워드: Data Fusion Algorithm

검색결과 299건 처리시간 0.041초

다중 센서 융합을 사용한 자동차형 로봇의 효율적인 실외 지역 위치 추정 방법 (An Efficient Outdoor Localization Method Using Multi-Sensor Fusion for Car-Like Robots)

  • 배상훈;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.995-1005
    • /
    • 2011
  • An efficient outdoor local localization method is suggested using multi-sensor fusion with MU-EKF (Multi-Update Extended Kalman Filter) for car-like mobile robots. In outdoor environments, where mobile robots are used for explorations or military services, accurate localization with multiple sensors is indispensable. In this paper, multi-sensor fusion outdoor local localization algorithm is proposed, which fuses sensor data from LRF (Laser Range Finder), Encoder, and GPS. First, encoder data is used for the prediction stage of MU-EKF. Then the LRF data obtained by scanning the environment is used to extract objects, and estimates the robot position and orientation by mapping with map objects, as the first update stage of MU-EKF. This estimation is finally fused with GPS as the second update stage of MU-EKF. This MU-EKF algorithm can also fuse more than three sensor data efficiently even with different sensor data sampling periods, and ensures high accuracy in localization. The validity of the proposed algorithm is revealed via experiments.

Classification of Textured Images Based on Discrete Wavelet Transform and Information Fusion

  • Anibou, Chaimae;Saidi, Mohammed Nabil;Aboutajdine, Driss
    • Journal of Information Processing Systems
    • /
    • 제11권3호
    • /
    • pp.421-437
    • /
    • 2015
  • This paper aims to present a supervised classification algorithm based on data fusion for the segmentation of the textured images. The feature extraction method we used is based on discrete wavelet transform (DWT). In the segmentation stage, the estimated feature vector of each pixel is sent to the support vector machine (SVM) classifier for initial labeling. To obtain a more accurate segmentation result, two strategies based on information fusion were used. We first integrated decision-level fusion strategies by combining decisions made by the SVM classifier within a sliding window. In the second strategy, the fuzzy set theory and rules based on probability theory were used to combine the scores obtained by SVM over a sliding window. Finally, the performance of the proposed segmentation algorithm was demonstrated on a variety of synthetic and real images and showed that the proposed data fusion method improved the classification accuracy compared to applying a SVM classifier. The results revealed that the overall accuracies of SVM classification of textured images is 88%, while our fusion methodology obtained an accuracy of up to 96%, depending on the size of the data base.

ACC/AEBS 시스템용 센서퓨전을 통한 주행경로 추정 알고리즘 (Development of the Driving path Estimation Algorithm for Adaptive Cruise Control System and Advanced Emergency Braking System Using Multi-sensor Fusion)

  • 이동우;이경수;이재완
    • 자동차안전학회지
    • /
    • 제3권2호
    • /
    • pp.28-33
    • /
    • 2011
  • This paper presents driving path estimation algorithm for adaptive cruise control system and advanced emergency braking system using multi-sensor fusion. Through data collection, yaw rate filtering based road curvature and vision sensor road curvature characteristics are analyzed. Yaw rate filtering based road curvature and vision sensor road curvature are fused into the one curvature by weighting factor which are considering characteristics of each curvature data. The proposed driving path estimation algorithm has been investigated via simulation performed on a vehicle package Carsim and Matlab/Simulink. It has been shown via simulation that the proposed driving path estimation algorithm improves primary target detection rate.

쿼드로터 자세제어를 위한 센서융합 연구 (Study of Sensor Fusion for Attitude Control of a Quad-rotor)

  • 유동현;임대영;설남오;박종호;정길도
    • 제어로봇시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.453-458
    • /
    • 2015
  • We presented a quad-rotor controlling algorithm design by using sensor fusion in this paper. The controller design technique was performed by a PD controller with a Kalman filter and compensation algorithm for increasing the stability and reliability of the quad-rotor attitude. In this paper, we propose an attitude estimation algorithm for quad-rotor based sensor fusion by using the Kalman filter. For this reason, firstly, we studied the platform configuration and principle of the quad-rotor. Secondly, the bias errors of a gyro sensor, acceleration and geomagnetic sensor are compensated. The measured values of each sensor are then fused via a Kalman filter. Finally, the performance of the proposed algorithm is evaluated through experimental data of attitude estimation. As a result, the proposed sensor fusion algorithm showed superior attitude estimation performance, and also proved that robust attitude estimation is possible even in disturbance.

다중 레이더 환경에서의 바이어스 오차 추정의 가관측성에 대한 연구와 정보 융합 (A Study of Observability Analysis and Data Fusion for Bias Estimation in a Multi-Radar System)

  • 원건희;송택렬;김다솔;서일환;황규환
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.783-789
    • /
    • 2011
  • Target tracking performance improvement using multi-sensor data fusion is a challenging work. However, biases in the measurements should be removed before various data fusion techniques are applied. In this paper, a bias removing algorithm using measurement data from multi-radar tracking systems is proposed and evaluated by computer simulation. To predict bias estimation performance in various geometric relations between the radar systems and target, a system observability index is proposed and tested via computer simulation results. It is also studied that target tracking which utilizes multi-sensor data fusion with bias-removed measurements results in better performance.

Data anomaly detection and Data fusion based on Incremental Principal Component Analysis in Fog Computing

  • Yu, Xue-Yong;Guo, Xin-Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권10호
    • /
    • pp.3989-4006
    • /
    • 2020
  • The intelligent agriculture monitoring is based on the perception and analysis of environmental data, which enables the monitoring of the production environment and the control of environmental regulation equipment. As the scale of the application continues to expand, a large amount of data will be generated from the perception layer and uploaded to the cloud service, which will bring challenges of insufficient bandwidth and processing capacity. A fog-based offline and real-time hybrid data analysis architecture was proposed in this paper, which combines offline and real-time analysis to enable real-time data processing on resource-constrained IoT devices. Furthermore, we propose a data process-ing algorithm based on the incremental principal component analysis, which can achieve data dimensionality reduction and update of principal components. We also introduce the concept of Squared Prediction Error (SPE) value and realize the abnormal detection of data through the combination of SPE value and data fusion algorithm. To ensure the accuracy and effectiveness of the algorithm, we design a regular-SPE hybrid model update strategy, which enables the principal component to be updated on demand when data anomalies are found. In addition, this strategy can significantly reduce resource consumption growth due to the data analysis architectures. Practical datasets-based simulations have confirmed that the proposed algorithm can perform data fusion and exception processing in real-time on resource-constrained devices; Our model update strategy can reduce the overall system resource consumption while ensuring the accuracy of the algorithm.

동적환경에서 퍼지추론을 이용한 이동로봇의 다중센서기반의 자율주행 (Multisensor-Based Navigation of a Mobile Robot Using a Fuzzy Inference in Dynamic Environments)

  • 진태석;이장명
    • 한국정밀공학회지
    • /
    • 제20권11호
    • /
    • pp.79-90
    • /
    • 2003
  • In this paper, we propose a multisensor-based navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments using multi-ultrasonic sensor. Instead of using “sensor fusion” method which generates the trajectory of a robot based upon the environment model and sensory data, “command fusion” method by fuzzy inference is used to govern the robot motions. The major factors for robot navigation are represented as a cost function. Using the data of the robot states and the environment, the weight value of each factor using fuzzy inference is determined for an optimal trajectory in dynamic environments. For the evaluation of the proposed algorithm, we performed simulations in PC as well as experiments with IRL-2002. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

Intelligent User Pattern Recognition based on Vision, Audio and Activity for Abnormal Event Detections of Single Households

  • Jung, Ju-Ho;Ahn, Jun-Ho
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.59-66
    • /
    • 2019
  • According to the KT telecommunication statistics, people stayed inside their houses on an average of 11.9 hours a day. As well as, according to NSC statistics in the united states, people regardless of age are injured for a variety of reasons in their houses. For purposes of this research, we have investigated an abnormal event detection algorithm to classify infrequently occurring behaviors as accidents, health emergencies, etc. in their daily lives. We propose a fusion method that combines three classification algorithms with vision pattern, audio pattern, and activity pattern to detect unusual user events. The vision pattern algorithm identifies people and objects based on video data collected through home CCTV. The audio and activity pattern algorithms classify user audio and activity behaviors using the data collected from built-in sensors on their smartphones in their houses. We evaluated the proposed individual pattern algorithm and fusion method based on multiple scenarios.

레이더와 비전센서 융합을 통한 전방 차량 인식 알고리즘 개발 (Radar and Vision Sensor Fusion for Primary Vehicle Detection)

  • 양승한;송봉섭;엄재용
    • 제어로봇시스템학회논문지
    • /
    • 제16권7호
    • /
    • pp.639-645
    • /
    • 2010
  • This paper presents the sensor fusion algorithm that recognizes a primary vehicle by fusing radar and monocular vision data. In general, most of commercial radars may lose tracking of the primary vehicle, i.e., the closest preceding vehicle in the same lane, when it stops or goes with other preceding vehicles in the adjacent lane with similar velocity and range. In order to improve the performance degradation of radar, vehicle detection information from vision sensor and path prediction predicted by ego vehicle sensors will be combined for target classification. Then, the target classification will work with probabilistic association filters to track a primary vehicle. Finally the performance of the proposed sensor fusion algorithm is validated using field test data on highway.

UTV localization from fusion of Dead -reckoning and LBL System

  • Woon, Jeon-Sang;Jung Sul;Cheol, Won-Moon;Hong Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.64.4-64
    • /
    • 2001
  • Localization is the key role in controlling the Mobile Robot. In this papers, a development of the sensor fusion algorithm for controling UTV(Unmanned Tracked Vehicle) is presented. The multi-sensocial dead-rocking subsystem is established based on the optimal filtering by first fusing heading angle reading from a magnetic compass, a rate-gyro and two encoders mouned on the robot wheels, thereby computing the deat-reckoned location. These data and the position data provoded by LBL system are fused together by means of an extended Kalman filter. This algorithm is proved by simulation studies.

  • PDF