• Title/Summary/Keyword: Data Fusion Algorithm

Search Result 301, Processing Time 0.027 seconds

An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis (R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템)

  • Lee, Choongseok;Lee, Suk Joo;Choi, Byounggu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.79-96
    • /
    • 2012
  • As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.

A Short-term Dynamic Displacement Estimation Method for Civil Infrastructures (사회기반 건설구조물의 단기 동적변위 산정기법)

  • Choi, Jaemook;Chung, Junyeon;Koo, Gunhee;Kim, Kiyoung;Sohn, Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.249-254
    • /
    • 2017
  • The paper presents a new short-term dynamic displacement estimation method based on an acceleration and a geophone sensor. The proposed method combines acceleration and velocity measurements through a real time data fusion algorithm based on Kalman filter. The proposed method can estimate the displacement of a structure without displacement sensors, which is typically difficult to be applied to earthquake or fire sites due to their requirement of a fixed rigid support. The proposed method double-integrates the acceleration measurement recursively, and corrects an accumulated integration error based on the velocity measurement, The performance of the proposed method was verified by a lab-scale test, in which displacement estimated by the proposed method are compared to a reference displacement measured by laser doppler vibrometer (LDV).

Inference System Fusing Rough Set Theory and Neuro-Fuzzy Network (Rough Set Theory와 Neuro-Fuzzy Network를 이용한 추론시스템)

  • Jung, Il-Hun;Seo, Jae-Yong;Yon, Jung-Heum;Cho, Hyun-Chan;Jeon, Hong-Tae
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.9
    • /
    • pp.49-57
    • /
    • 1999
  • The fusion of fuzzy set theory and neural networks technologies have concentrated on applying neural networks to obtain the optimal rule bases of fuzzy logic system. Unfortunately, this is very hard to achieve due to limited learning capabilities of neural networks. To overcome this difficulty, we propose a new approach in which rough set theory and neuro-fuzzy fusion are combined to obtain the optimal rule base from input/output data. Compared with conventional FNN, the proposed algorithm is considerably more realistic because it reduces overlapped data when construction a rule base. This results are applied to the construction of inference rules for controlling the temperature at specified points in a refrigerator.

  • PDF

Design of Multi-Sensor-Based Open Architecture Integrated Navigation System for Localization of UGV

  • Choi, Ji-Hoon;Oh, Sang Heon;Kim, Hyo Seok;Lee, Yong Woo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • The UGV is one of the special field robot developed for mine detection, surveillance and transportation. To achieve successfully the missions of the UGV, the accurate and reliable navigation data should be provided. This paper presents design and implementation of multi-sensor-based open architecture integrated navigation for localization of UGV. The presented architecture hierarchically classifies the integrated system into four layers and data communications between layers are based on the distributed object oriented middleware. The navigation manager determines the navigation mode with the QoS information of each navigation sensor and the integrated filter performs the navigation mode-based data fusion in the filtering process. Also, all navigation variables including the filter parameters and QoS of navigation data can be modified in GUI and consequently, the user can operate the integrated navigation system more usefully. The conventional GPS/INS integrated system does not guarantee the long-term reliability of localization when GPS solution is not available by signal blockage and intentional jamming in outdoor environment. The presented integration algorithm, however, based on the adaptive federated filter structure with FDI algorithm can integrate effectively the output of multi-sensor such as 3D LADAR, vision, odometer, magnetic compass and zero velocity to enhance the accuracy of localization result in the case that GPS is unavailable. The field test was carried out with the UGV and the test results show that the presented integrated navigation system can provide more robust and accurate localization performance than the conventional GPS/INS integrated system in outdoor environments.

A Study for Change of Audio Data according to Rotation Degree of VR Video (VR 영상의 회전각도에 따른 오디오 데이터 변화에 관한 연구)

  • Ko, Eun-Ji;Yang, Ji-Hee;Kim, Young-Ae;Park, Goo-Man;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1135-1142
    • /
    • 2017
  • In this paper, we propose an algorithm that can automatically mix the screen and sound by tracking the change of the sound data according to the screen change so that the real sound can be implemented in the personal broadcasting service. Since the personal broadcasting service is often broadcasted lively, it should be convenient to have a real-time mixing. Through experiments, it was confirmed that the sound pressure changes in a wide range in the high frequency band related to the clarity for understanding according to the rotation angle change of the screen. Regression analysis of the sound pressure changes at 2kHz, 4kHz, and 8kHz, The attenuation change of sound pressure was observed at the slope of -1.17, the slope of -2.0, and the slope of -2.44 for each frequency. Therefore, these experiment results can be applied to the VR service. This study is expected to be useful data in the implementation of personal broadcasting service.

A Time Series-based Algorithm for Eliminating Outliers of GPS Probe Data (시계열기반의 GPS 프로브 자료의 이상치 제거 알고리즘 개발)

  • Choi, Kee-Choo;Jang, Jeong-A
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.67-77
    • /
    • 2004
  • A treatment of outlier has been discussed. Outliers disrupt the reliability of information systems and they should be eliminated prior to the information and/or data fusion. A time series-based elimination algorithm were proposed and prediction interval, as a criterion of acceptable value width, was obtained with the model. Ten actual link values were used and the best model was identified as IMA(1,1). Although the actual verification was difficult in a sense that the matching process between the eliminated data and model data was not readily available, the proposed model can be successfully used in practice with some calibration efforts.

Diagnosis of Sarcopenia in the Elderly and Development of Deep Learning Algorithm Exploiting Smart Devices (스마트 디바이스를 활용한 노약자 근감소증 진단과 딥러닝 알고리즘)

  • Yun, Younguk;Sohn, Jung-woo
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.433-443
    • /
    • 2022
  • Purpose: In this paper, we propose a study of deep learning algorithms that estimate and predict sarcopenia by exploiting the high penetration rate of smart devices. Method: To utilize deep learning techniques, experimental data were collected by using the inertial sensor embedded in the smart device. We implemented a smart device application for data collection. The data are collected by labeling normal and abnormal gait and five states of running, falling and squat posture. Result: The accuracy was analyzed by comparative analysis of LSTM, CNN, and RNN models, and binary classification accuracy of 99.87% and multiple classification accuracy of 92.30% were obtained using the CNN-LSTM fusion algorithm. Conclusion: A study was conducted using a smart sensoring device, focusing on the fact that gait abnormalities occur for people with sarcopenia. It is expected that this study can contribute to strengthening the safety issues caused by sarcopenia.

Steering Gaze of a Camera in an Active Vision System: Fusion Theme of Computer Vision and Control (능동적인 비전 시스템에서 카메라의 시선 조정: 컴퓨터 비전과 제어의 융합 테마)

  • 한영모
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.39-43
    • /
    • 2004
  • A typical theme of active vision systems is gaze-fixing of a camera. Here gaze-fixing of a camera means by steering orientation of a camera so that a given point on the object is always at the center of the image. For this we need to combine a function to analyze image data and a function to control orientation of a camera. This paper presents an algorithm for gaze-fixing of a camera where image analysis and orientation control are designed in a frame. At this time, for avoiding difficulties in implementing and aiming for real-time applications we design the algorithm to be a simple closed-form without using my information related to calibration of the camera or structure estimation.

Recent Development of Scoring Functions on Small Molecular Docking (소분자 도킹에서의 평가함수의 개발 동향)

  • Chung, Hwan Won;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.49-53
    • /
    • 2010
  • Molecular docking is a critical event which mostly forms Van der waals complex in molecular recognition. Since the majority of developed drugs are small molecules, docking them into proteins has been a prime concern in drug discovery community. Since the binding pose space is too vast to cover completely, many search algorithms such as genetic algorithm, Monte Carlo, simulated annealing, distance geometry have been developed. Proper evaluation of the quality of binding is an essential problem. Scoring functions derived from force fields handle the ligand binding prediction with the use of potential energies and sometimes in combination with solvation and entropy contributions. Knowledge-based scoring functions are based on atom pair potentials derived from structural databases. Forces and potentials are collected from known protein-ligand complexes to get a score for their binding affinities (e.g. PME). Empirical scoring functions are derived from training sets of protein-ligand complexes with determined affinity data. Because non of any single scoring function performs generally better than others, some other approaches have been tried. Although numerous scoring functions have been developed to locate the correct binding poses, it still remains a major hurdle to derive an accurate scoring function for general targets. Recently, consensus scoring functions and target specific scoring functions have been studied to overcome the current limitations.

Object Tracking in 3-D Space with Passive Acoustic Sensors using Particle Filter

  • Lee, Jin-Seok;Cho, Shung-Han;Hong, Sang-Jin;Lim, Jae-Chan;Oh, Seong-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1632-1652
    • /
    • 2011
  • This paper considers the object tracking problem in three dimensional (3-D) space when the azimuth and elevation of the object are available from the passive acoustic sensor. The particle filtering technique can be directly applied to estimate the 3-D object location, but we propose to decompose the 3-D particle filter into the three planes' particle filters, which are individually designed for the 2-D bearings-only tracking problems. 2-D bearing information is derived from the azimuth and elevation of the object to be used for the 2-D particle filter. Two estimates of three planes' particle filters are selected based on the characterization of the acoustic sensor operation in a noisy environment. The Cramer-Rao Lower Bound of the proposed 2-D particle filter-based algorithm is derived and compared against the algorithm that is based on the direct 3-D particle filter.