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Abstract 
 

This paper considers the object tracking problem in three dimensional (3-D) space when the 

azimuth and elevation of the object are available from the passive acoustic sensor. The particle 

filtering technique can be directly applied to estimate the 3-D object location, but we propose 

to decompose the 3-D particle filter into the three planes' particle filters, which are 

individually designed for the 2-D bearings-only tracking problems. 2-D bearing information is 

derived from the azimuth and elevation of the object to be used for the 2-D particle filter. Two 

estimates of three planes' particle filters are selected based on the characterization of the 

acoustic sensor operation in a noisy environment. The Cramer-Rao Lower Bound of the 

proposed 2-D particle filter-based algorithm is derived and compared against the algorithm 

that is based on the direct 3-D particle filter. 
 

 

Keywords: Acoustic sensors, bearings-only tracking, 3-D object tracking, particle filter, data 

fusion 
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1. Introduction 

Locating and tracking an object using passive sensors both indoor and outdoor have been 

widely used in numerous applications. For tracking an object via passive sensors, several 

approaches based on the time-delay estimation (TDE) methods and beamforming methods 

have been proposed. The TDE method estimates location based on the time delay of the arrival 

of signals at the receivers [1]. The beamforming method uses the frequency-averaged output 

power of a steered beamformer [2][3]. The TDE method and beamforming method  determine 

the current source location using the data obtained only at the current time. Each method 

transforms the acoustic data to a spatial data so that the peak represents the source location in a 

deterministic way. 

The estimation accuracy of these methods, however, is sensitive to noise-corrupted signals. 

In order to overcome the drawback of these methods, a state-space driven approach based on 

particle filtering has been proposed [4][5]. The particle filtering is an emerging powerful tool 

for sequential signal processing, especially for nonlinear and non-Gaussian problems 

[6][7][8][9]. Tracking with particle filters for source localization is formulated in [10], where 

the TDE and beamforming methods are revised for the new framework. In [10], sensors are 

positioned at specified locations with constant height to estimate an object's trajectory in two 

dimensional (2-D) space. The extension to 3-D space from the revised TDE and beamforming 

methods is difficult, and a large number of microphones are required to generate a new 2-D 

plane for the 3-D extension. In addition, mobility of the sensors cannot be supported due to 

their fixed positions. In order to overcome the mobility problem, Direction of Arrival (DOA) 

based bearings-only tracking has been widely used in many applications [11][12][13]. In [14], 

acoustic sensors with DOA are incorportated with visual sensors for better accurate estimation 

in 2-D plane. 

In this paper, we analyze the tracking methods based on passive sensors only to achieve  

flexible and accurate 3-D tracking. Tracking in 3-D has been addressed by directly extending 

2-D bearings-only tracking problem to 3-D problem [15][16]. Instead of directly extending 

traditional particle filtering algorithms for bearings-only tracking in 3-D space, we propose to 

decompose the 3-D particle filter into several simpler particle filters designed for 2-D 

bearings-only tracking problems. The decomposition and planes selection are based on the 

characterization of the acoustic sensor operation under noisy environment. We use the passive 

acoustic localizer model in [17], where the two angle components (azimuth angle   and 

elevation angle  ) between a sensor and an object are detected by the localizer. We compare 

the proposed approach with the directly extended bearings-only tracking method using 

Cramer-Rao Lower Bound. 

The rest of this paper is organized as follows. Section 2 discusses the background and 

motivation, where we describe the sensor model and its noise characteristics. The general 

problem formulation and the dynamic model are also described. In Section 3, we describe the 

proposed method. Specifically, the Projected Planes Selection (PPS) method and planes 

combining scheme are discussed. Section 4 derives the Cramer-Rao Lower Bound (CRLB), 

and the simulation results are presented with CRLB in section 5. Finally, our contribution is 

summarized in Section 6. 
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2. Background and Problem Description 

2.1 Problem Formulation for 3-D space Estimation 

Consider an object's state vector 
nX , with discrete time instant n     1,2, , evolving 

according to 

 

    1 1 1,( )n n n nf    X X Q                                                 (1) 

 

where 
1nf 
 is a nonlinear dynamic transition function on state vector 

1nX  and 
1nQ  is a noise 

process (not-necessarily Gaussian) sampled at time instant 1n . The measurements of the 

object state vector is expressed as 

 

    
( ) ,n n n nh Z X E                                                     (2) 

 

where 
nh  is a nonlinear and time-varying observation function of state vector 

nX  and 
nE  is 

the measurement error referred to as a measurement noise sequence which is an independent 

identically distributed (IID) noise process. Then, the prediction probability density function 

(pdf) is obtained as 

 

    1: 1 1 1 1: 1 1( | ) ( | ) ( | ) d ,n n n n n n np p p     X Z X X X Z X                        (3) 

 

where 
1:nZ  represents the sequence of measurements up to time instant n , and 

1( | )n np X X  is 

the state transition density with Markov process of order one related to ( )nf   and 
1nQ  in (1) 

[19]. Note that 1 1: 1( | )n np  X Z  is recursively obtained from previous time instants. 

From the Bayes' rule, the estimation at the next time instant can be done as follow. The 

posterior pdf is obtained using the prediction pdf as 

 

    
1: 1

1:

1: 1

( | ) ( | )
( | ) ,

( | ) ( | ) d

n n n n
n n

n n n n n

p p
p

p p









Z X X Z
X Z

Z X X Z X
                       (4) 

where ( | )n np Z X  is the likelihood or measurement density in (2) related to the measurement 

model ( )nh   and the noise process nE , and the denominator is the normalizing constant. Note 

that the measurement nZ  is used to modify the prior density in (3) to obtain the current 

posterior density in (4) [19]. 

In this paper, ,xy n  and ( )n xyZ  are interchangeably used as the projected angle 

measurement in the xy -plane. Similarly, ,yz n , ( )n yzZ , ,zx n , ( )n zxZ  are for yz -plane and 

zx -plane, respectively. The state vectors of an object in 3-D space ( nX ) and in 2-D planes, 

( ( )n xyX , ( )n yzX , ( )n zxX ) are defined as 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 9, September 2011                                1635 

( ) ( ) ( )

( ) ( ) ( )
, ( ) , ( ) , and ( ) ,

( ) ( ) ( )

( ) ( ) ( )

n

x

n n n n

x y z

n n n n

n n n ny

n n n n

y z x

n n n n

z

n

x

V x xy y yz z zx

y V xy V yz V zx
xy yz zx

V y xy z yz x zx

z V xy V yz V zx

V

 
 

      
      
         
      
      
     

  
 

X X X X
   

 (5) 

 

where  , ,n n nx y z  and  , ,x y z

n n nV V V  are the true source location and the velocity in 3-D 

Cartesian coordinates at time instant n .  ( ), ( )n nx xy y xy  and  ( ), ( )x y

n nV xy V xy  are the 

projected true source location and velocity on the xy -plane at time instant n ; the same 

notation is applied for the yz - and zx -planes. Note that ( )nx xy  and ( )nx zx  are estimated 

separately and nx  is the finally fused value based on ( )nx xy  and ( )nx zx ; the rest of 

components are applied in the same way. The three posterior pdf involving prediction 

probability density functions are given as 

 

1: 1
1:

1: 1

( ( ) | ( )) ( ( ) | ( ))
( ( ) | ( )) ,

( ( ) | ( )) ( ( ) | ( )) d ( )

n n n n
n n

n n n n n

p xy xy p xy xy
p xy xy

p xy xy p xy xy xy









Z X X Z
X Z

Z X X Z X
     (6)  

 

1: 1
1:

1: 1

( ( ) | ( )) ( ( ) | ( ))
( ( ) | ( )) ,

( ( ) | ( )) ( ( ) | ( )) d ( )

n n n n
n n

n n n n n

p yz yz p yz yz
p yz yz

p yz yz p yz yz yz









Z X X Z
X Z

Z X X Z X
     (7)  

 

1: 1
1:

1: 1

( ( ) | ( )) ( ( ) | ( ))
( ( ) | ( )) .

( ( ) | ( )) ( ( ) | ( )) d ( )

n n n n
n n

n n n n n

p zx zx p zx zx
p zx zx

p zx zx p zx zx zx









Z X X Z
X Z

Z X X Z X
     (8)  

 

Three 2-D estimates from the posterior pdfs given by equations (6), (7) and (8) can be used 

to estimate a single object's 3-D state vector. However, equations (6), (7) and (8) are only for 

the conceptual purpose, and they generally cannot be computed analytically except in special 

cases such as the linear Gaussian state space model. Instead of using those equations, for a 

nonlinear system, the particle filter can approximate the posterior pdf using a cloud of particles, 

and a sequential importance sampling (SIS) can be applied to perform the nonlinear filtering 

[9]. The particle filtering is further derived to the sequential importance resampling (SIR) 

algorithm, which chooses the candidates of importance density and performs the resampling at 

every time instant [20]. In this paper, we use the SIR particle filter that has a generic particle 

filtering algorithm for object tracking. 

2.2 Dynamic Model and Observation Likelihood Function 

Several dynamic models have been proposed to estimate the time-varying location and 

velocity. For the bearings-only tracking, three types of models are presented [13]. In the 2-D 

xy -plane, the constant velocity (CV) model, the clockwise coordinated turn (CT) model, and 
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the anti-clockwise coordinated turn (ACT) model are expressed by state transition matrices 
(1)

nF , 
(2)

nF  and 
(3)

nF , respectively as 

 

(1)

1 0 0

0 1 0 0

0 0 1

0 0 0 1

s

n

s

T

T

 
 
 
 
 
 

F  and 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( )

1 sin( ) / 0 (1 cos( )) /

0 (1 cos( )) / 1 sin( ) /
,

0 cos( ) 0 sin( )

0 sin( ) 0 cos( )

d d d d

n s n n s n

d d d d

d n s n n s n

n d d

n s n s

d d

n s n s

T T

T T

T T

T T

      
 

     
   
    

F  

(9) 

 

where sT  is the sampling period, d  = 2,3 and 
( )d

n  is the mode-conditioned turning rate 

expressed as follows; 

 

       

(2) (3)

2 2 2 2
 and ,n n

x y x y

n n n nV V V V

 
   

 

                (10) 

 

where   is a constant for the rotated angle degree. In addition, the Constant Acceleration (CA) 

model in xy -plane is expressed as follows; 

 

 

 

 

 

2

1

1
(4)

2

1

1

1 / 2 0 0

0 / 1 0 0
,

0 0 1 / 2

0 0 0 / 1

x

x s n s

x

x s n

n
y

y s n s

y

y s n

A T V T

A T V

A T V T

A T V









 
 
 
 
 
 
 
 

F
                 (11) 

 

where xA  and yA  denote accelerations in the xy -plane for x - and y -directions, 

respectively. For the yz - and zx -planes, 
xV  and 

yV  in (10), and xA  and yA  in (11) are 

replaced according to the object state directional components. Furthermore, the CA model 

becomes the CV model when the values of xA  and yA  are zero. 

The SIR particle filter operates as follows [20]. After a dynamic model propagates the sets 

of M  particles for 
(1: )

1 ( )M

n xyX , 
(1: )

1 ( )M

n yzX  and 
(1: )

1 ( )M

n zxX , new sets of particles 
(1: ) ( )M

n xyX , 

(1: ) ( )$,M

n yzX and 
(1: ) ( )M

n zxX  are generated. Then, the observation likelihood functions 

 

     (1: ) (1: ) (1: )( )  ( ) ,  ( )  ( ) ,  and ( )  ( )M M M

n n n n n np xy xy p yz yz p zx zxZ X Z X Z X
 
  (12) 

 

calculate the weights of the generated particles and estimate ( )n xyX , ( )n yzX  and ( )n zxX  

respectively, through the resampling processes. 
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2.3 Noisy Measurement Characterization on Projected Planes 

 

X

Y

Z

xy

yz

zx 

 
 

Fig. 1. Conversion of the original angles   and   to the projected angles xy , yz  and zx . 

 

The 3-D localizer model and its implementation are described in [17], and it is based on the 

gradient flow to determine the DOA of the acoustic source. Fig. 1 illustrates the simplified 

angle conversion process. Based on the two measured angles, azimuth   and elevation  , 

( 0 2   , 0    ), three projected angles onto two dimensional (2-D) planes are 

derived; xy , yz  and zx . Each of these three angles can be used for 2-D tracking using the 

particle filter [18]. For example, xy  is used in xy -plane, yz  and zx  are used in yz -plane 

and zx -plane, respectively. The projected angles are derived and defined as 

 

| sec | tan
, arctan , arctan ,

tan tan | sec |
xy yz zx

 
     

  

   
       

   
       

(13) 

 

where 

 

0,  for 0, 0 0,  for 0, 0
1

, for 0, ,  for 0,  and sec
cos

2 ,  for 0, 0, 2 ,  for 0, 0,

y z z x

y x

y z z x

    


 

    
 

     
     

   
(14) 

 

We assume that each of the measurement errors of the original angles of   and   is and 

independent and identically distributed random sequence, respectively, and the two random 

sequences are independent. Also, we assume that the measurement errors are zero-mean with 

the same variance of 
2 . Then, the noisy measurements of   and   with the same error 
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variance of 
2  are reflected to the projected plane angles xy , yz  and zx  with their own 

variances 
2

xy , 
2

yz , and 
2

zx , respectively. Define the projected plane angles as 

 

, , , , , ,, , ,xy yz zx

xy n xy n n yz n yz n n zx n zx n ne e e          
                 

(15) 

 

where ,n
P  is the projected true angle, neP  is the angle error with the variance 

2
P

 in P -plane 

at time instant n , and P     , ,xy yz zx . Note that the original measurement error variance, 

2 , is differently projected to 
2

xy , 
2

yz  and 
2

zx . 
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Fig. 2. Angle variances yz  in a projected yz -plane according to   and  . The originally measured 
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angle variances are 1. (x-axis: angle   (degree), y-axis: variance) 
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Fig. 3. Angle variances zx  in a projected zx -plane according to   and  . The originally measured 

angle variances are 1. (x-axis: angle   (degree), y-axis: variance) 

 

The projected angles from the original measurements   and   are derived in (13), but it is 

difficult to derive the closed-form expression for their variances from the variances of the 

original measurement errors – it requires the variance of products and variance of nonlinear 

functions. The results from the Monte-Carlo simulation in Fig. 2 and Fig. 3 show the projected 

angles' variances when the original measurements' variances are one. Note that the projected 

measurement in xy -plane, xy  is the same as the original  ; thus, 
2

xy  is the same as 
2 . 

The projected variances in yz - and zx -planes are functions of   and  . In yz -plane, the 

elevation angles   between 45
 and 135

 are projected with a smaller variance than the 
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original measurement variance of one. In addition, as the azimuth angle   approaches 0
 or 

180
, variance further decreases. For zx -plane, the other ranges of   and   are projected 

with a smaller variance than that of the original measurements. 

3. Projected Planes Selection for Object Tracking in 3-D Space 

3.1 Projected Planes Selection (PPS) Method 

Planes Selection and Particles Generation: Instead of using the particle filter formulation with 

the direct 3-D state, the approach in this paper uses two of three possible 2-D particle filter 

formulations in order to estimate the 3-D state information. In the PPS method, we choose two 

planes with the smallest variance according to Fig. 2 and Fig. 3. Note that xy -plane is always 

chosen because the projected variance in xy -plane is the second best plane with the same 

variance as the originally measured azimuth angle  . The other yz - or zx -plane is selected 

based on the measured angle. For example, when   is measured between 45o
 and 135o

, the

yz -plane is chosen. Otherwise, the zx -plane is chosen.  

Once the two planes are selected, the two 2-D particle filters estimate the states separately. 

While the particle filters in the chosen planes estimate the state vectors, the particle filter in the 

other remained plane awaits for the selection. When the measured angles become close to the 

range where the projected measurement variance in the remained plane becomes less than the 

originally measured variance, the selected plane is switched. 

There is always one redundant component that appears in both planes (i.e., y -component 

appears in xy -and yz -planes). As two particle filters are estimating the states separately, the 

redundant directional state from two particle filters may differ. For example, as discussed in 

(5), the intermediate 2-D object state vectors are given as  ( ), ( ), ( ), ( )
T

x y

n n n nx xy V xy y xy V xy  

from the xy -plane particle filter and  ( ), ( ), ( ), ( )
T

y z

n n n ny yz V yz z yz V yz  from the yz -plane 

particle filter. Both ( )ny xy  and ( )ny yz  represent y  directional position information, but the 

two values are different. Therefore, a combining method should be considered in order to get 

one final 3-D object state vector nX . 

Redundancy Consideration in Combining Method: There are two ways to combine the two 

estimates of the state vectors of the y -direction's state vectors when xy - and yz - planes are 

selected; the planes weighted combining and the equal weight combining. In the planes 

weighted combining method, the two estimates are weighted according to the sum of weights 

of unnormalized particles in each plane's particle filter. This method is derived from the 

multiple particle filtering method [21], and extended to be combined into a final value with 

respect to the redundant state. Since a particle represents a point mass of the probability 

density, the sum of weights of unnormalized particles can be used in evaluating how the 

expected state is close to the true state [18][21][22]. The final 3-D object state vector nX  with 

the planes weighted combining method is obtained by 
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1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0
( | ) ( | ) ( | ),

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

n n n nx xyz y xyz z xyz

     
     
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     
     
          
     

X X X X
         

(16) 

 

where ( | )n x xyzX , ( | )n y xyzX  and ( | )n z xyzX  are final 3-D estimated vectors with 

respect to each directional component representing [ , ]x T

n nx V , [ , ]y T

n ny V  and [ , ]z T

n nz V , 

respectively. When the xy - and yz -planes are selected 
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X X
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(17) 

 

 ( | ( | ), )n nx xyz x xyX X  and  ( | ( | ), )n nz xyz z yzX X
 
               (18) 

 

where ( | )n x xyX  and ( | )n y xyX  represent the x  and y  directional 2-D state vectors in xy

-plane, respectively. ( | )n y yzX  and ( | )n z yzX  represent the y  and z  directional 2-D state 

vectors in yz -plane. 
( ) ( )i

nw xy  and 
( ) ( )i

nw yz  are the i -th particle's weight of the particle filter 

for xy - and yz -plane at time instant n , and M  represents the number of particles for each 

particle filter. Thus, the redundant y  directional states are combined as in (17), where the 

weighting factors are 
( )

1

( )
M

i

i

n yw x


  to xy -plane and 
( )

1

( )
M

i

i

n zw y


  to yz -plane. 

For the equal weight combining method, as it simply takes an average value, the redundant 

component y  in (17) is replaced by 

 

( | ) ( | )
( | ) .

2

n n
n

y xy y yz
y xyz




X X
X

                              
(19) 

3.2 Discussion 

It has been assumed that the nonlinear dynamic transition function nf  is known as the state 

transition matrix nF  – as the particle filter is a model-based approach. If the dynamic model 

nf  changes in the middle of tracking, then the estimation from the particle filter can diverge. 

Divergence means that a predicted state and a true state continuously become more distant due 

to the unmatched model of a particle filter. Also, if the state of the unmatched model lasts 

longer, then the estimation may not recover even after recovering the model. The planes 



1642                                               Lee et al.: Object Tracking in 3-D Space with Passive Acoustic Sensors using Particle Filter 

weighted combining method can discard the estimation from the plane with negligible sum of 

weights of unnormalized particles based on the likelihood function  (1: )M

n np Z X , and thus 

prevents estimation deviation. The equal weight combining and the planes weighted 

combining methods have similar tracking performance if all selected plane-particle filters 

show good tracking performances. However, when the tracking performance of one of the two 

particle filters deteriorates, the planes weighted combining method shows better performance.  
 

20 40 60 80 100 120 140
15

20

25

30

35

40

45
Tracking Before Weighting (yz-plane)

Movement

Tracking

Y

Z

 
Fig. 4. Poor tracking in the yz-plane without combining methods. (Number of particles : 1,000). 
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Fig. 5. Modified tracking performance with combining methods (Number of particles : 1,000) (a) Equal 

weight combining method (b) Weighted combining method. 

Tracking performance is shown in Fig. 4 and Fig. 5, where the particle filter in yz -plane 

results in a deviated estimation. Since the xy - and yz -planes are selected, the y  direction's 

state estimates are combined. Fig. 4 shows an example of tracking deviation in the yz -plane 

due to the unmatched model or a particle filter's performance degradation. Fig. 5 shows a final 

estimation after applying two combining methods. Especially in Fig. 5(b), it is shown that the 

planes weighted combining method maintains the object tracking by considering the 

contribution of the sum of weights of unnormalized particles from different planes. PPS 

Versus Direct 2-D Method: The 3-D object state model directly uses two original 

measurements and a cone shape likelihood function for assigning 3-D distributed particle 
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weights [23]. The direct 3-D Method uses the two original measurements with 
2 , while the 

PPS method uses two projected measurements with 
2

xy  and 
2 2min( , )yz zx  . Fig. 6 shows the 

sum of weights of unnormalized particles corresponding to the selected yz -plane and the 

direct 3-D model. It is shown that the selected plane is less sensitive to measurement noise 

than the direct 3-D model; thus, the unnormalized particles weight-sums of PPS method is 

larger than those of the direct 3-D Method. In addition, the direct 3-D Method cannot achieve 

redundancy, and thus there is no opportunity to avoid performance degradation when a 

particle filter has poor performance. The performances are compared according to the 

Cramer-Rao Lower bound (CRLB) in Section 4. 
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Fig. 6. Comparison between the selected yz - planes and 3-D space: unnormalized particles 

weight-sums according to the variances of original measurements (The number of particles: 100). 

4. Cramer-Rao Lower Bound Derivation and Performance Analysis 

The Cramer-Rao Lower Bound (CRLB) has been widely used as a reference in evaluating an 

estimator by representing the minimum covariance of the estimated states that an unbiased 

estimator can achieve. For the object tracking problem with bearings-only measurements, the 

CRLB is investigated in [24], and similar approaches are taken in this paper. As in [24], we 

assume that the process noise nQ  is zero and the dynamic models are fixed and known; 

otherwise, the derivation is intractable. The covariance matrix of the state estimate nX̂  is 

given as follows 

   1

n

T

nnnnn E







  JXXXXC ˆˆ 

                              
(20) 

where nJ  is the information matrix, and it is defined as 

 

 log ( | ) log ( | ) ,
n n

T

n n n n nE p p        X XJ X Z X Z                     
(21) 
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where 
n

X  denotes the gradient operator with respect to the state vector nX , and 

( | )n np X Z  is the conditional pdf of state nX  given the observation nZ . Note that the 

inequality of the square matrix in (20) means  that matrix 
1

n n

C J  is  positive definite. The 

CRLB's of the components in the state vector nX  is the lower bound of its variance, and it is 

the diagonal elements of the inverse matrix of nJ  [25]. 

We do not directly obtain the information matrix as in (21), but it is derived recursively as 

follows. In the absence of process noise, the evolution of state vector is deterministic, and it is 

given as [19][26] 
 

1 1 1

1 1 1 1,
T

T

n n n n n n n

  

   
   J F J F H R H

                               
(22) 

 

where nF  is the state transition matrix that represents CV or CA as shown in (10) and (11), 

respectively, 1nR  is the covariance matrix of the bearing measurements and nH  is the 

gradient component of a measurement function nh . nH  is referred to as the Jacobian of nh , 

and it is given as follows 
 

 ( ) .
n

T
T

n n nh 
X

H X
                                          

(23) 

 

In the following subsections, the CRLB's of the PPS method are compared against the direct 

3-D Method. The dynamic model of interest is assumed to be CV in the x -axis, CA with yA  

and zA  in the y  and z -axis. 

4.1 CRLB Derivation based on the PPS Method 

In the PPS method, two information matrices in (22) are generated for each selected plane. For 

clear notation, we put the plane type P  as nJ
P

, which represents 
xy

nJ , 
yz

nJ  or 
zx

nJ . Similarly, 

the transition matrix, measurement variance and Jacobian of nh  are also denoted as nF
P

, nR
P

 

and nH
P

, respectively for  , ,xy yz zxP . From (9) and (11), transition matrices nF
P

's are 

derived as 
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   
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F F
    

(24) 

 

and 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 9, September 2011                                1645 
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(25) 

In the PPS method, the covariance matrix of measurement, nR
P

 becomes 
2

xy , 
2

yz  or 
2

zx , 

which is the variance of a single (projected) bearing measurement in the projected plane xy , 

yx  or zx -plane, respectively. The performance of the PPS method is mainly enhanced by 

taking only the measurement with smaller variance. According to Fig. 2 and Fig. 3, the raw 

bearings,   and  , are projected onto the three planes with the different angle variances 

according to the object's position. 

For Jacobians in the xy -plane,  1

xy

nH  is derived from 

 

    1
1 1 1

1

( ) ( ) arctanT n
n n xy n

n

y
h xy xy

x
 

  



 
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X X

                      
(26) 

 

and 
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Then, 
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and by the same way, the Jacobians for yz - and zx -planes are derived as follows 
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(29) 
 

For the PPS method with a single sensor, the information matrix nJ  given in (22) can be 

recursively obtained using equations from (24) to (38) except the initial condition. We can 

assume that 0J  is a zero matrix -- no information at all at the beginning of the estimation. 

4.2 CRLB Derivation based on the Direct 3-D Method 
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In the direct 3-D method, the information matrix nJ  is expressed as a 6 6  matrix, and the 

lower bound is directly obtained from (22) with the extension of 2-D state vector based 

matrices. The state transition matrix is expressed as 
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(30) 

5. Analysis and Simulation 

In this section, the PPS and direct 3D methods are compared in terms of their simulation 

results and CRLB's. As the proposed method selects the smallest measurement variance, the 

covariance nR  plays an important role for the lower bound. The minimum covariances 

obtained via the PPS method minimize the lower bound – the PPS method flexibly chooses 

planes with the smallest variances. Several scenarios are considered for performance 

comparison. Scenario 1 and 2 show the single sensor based plane selection according to  . 

Scenario 3 shows the changes of the plane selection from xy - and yz -planes to xy - and zx

-planes according to  . In all scenarios, the sensor is measuring   and   with the interval of 

0.1 second and the variances of the measurements are both 3. 

5.1 Scenario 1 

In this scenario, an object is moving in the range of   being between 45.36o
 and 76.74o

 as 

well as in the range of   being between 45.00o
 and 49.04o

. More specifically, a single 

sensor is placed in the origin (0m, 0m, 0m), and the initial position of the object is (3m, 3m, 1m) 

with an initial velocity of (1m/s, 1m/s, 1m/s). The observed object is moving in CV in the x

-direction, in CA in the y  and z  directions, with 
20.1 /m s  and 

20.5 /m s , respectively. 

Since the   is measured in the range between 45.36o
 and 76.74o

, the xy - and yz -planes 

are selected. In addition, the initial object state is given. 

5.2 Scenario 2 

In this scenario, an object is moving in the range of   being between 25.24o
 and 36.26o

 as 

well as in the range of   being between 45.00o
 and 50.28o

. Similar to scenario 1, a single 

sensor is placed at the origin (0m, 0m, 0m) with the same initial object velocity and movement. 

The initial object position is (1m, 1m, 3m). Since   is in the range between 25.24o
 and 

36.26o
, the xy - and zx -planes are selected. Also, the initial object state is given. 

5.3 Scenario 3 
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In this scenario, an object moves in the range of   being between 28.07o
 and 48.24o

 

crossing 45o
. The sensor is placed at the origin (0m, 0m, 0m), and the initial position of the 

object is (2m, 1m, 2m) with an initial velocity of (0.3m/s, 0.3m/s, 0.3m/s). Similar to previous 

scenarios, the observed object is moving in CV in the x -direction, in CA in the y - and z

-directions, with 
20.1 /m s  and 

20.5 /m s , respectively. Since   of the first 13 time instants 

is measured between 48.24o
 and 45.42o

, the xy - and yz -planes are selected. In the last 37 

time instants, xy - and zx -planes are selected since   is measured between 28.07o
 and 

44.96o
. 
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Fig. 7. Scenario 1: Selected xy - and yz - planes based on PPS show better performance. 

 

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time-instant

(m
)

X(xy) (CRLB)

X(zx) (CRLB)

X(Direct) (CRLB)

X(PPS) (RMSE)

X(Direct) (RMSE)

 

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

35 40 45 50

Time-instant

(m
)

Y(xy) (CRLB)

Y(yz) (CRLB)

Y(Direct) (CRLB)

Y(PPS) (RMSE)

Y(Direct) (RMSE)

 

(a) CRLB X (b) CRLB Y 

Fig. 8. Scenario 2: Selected xy - and zx - planes based on PPS show better performance. 

5.4 Results  

Fig. 7, Fig. 8 and Fig. 9 represent the lower bound and RMSE in each direction based on 

scenario 1, 2 and 3, respectively. In Fig. 7, selecting the yz -plane with xy -plane and in Fig. 8, 
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selecting the zx -plane with xy - plane show good performance, which proves that the PPS 

method is a good estimator. Note that all boundaries are presented for comparing the selection 

of other planes. In addition, a dynamic plane selection is shown in simulated in Fig. 9. Also, 

note that PF we use is known as the best estimator in nonlinear and non-Gaussian tracking 

problem. Under the condition with linear and Gaussian tracking problem, Kalman filter with 

PPS method will provide the optimum estimation in 3-D space.  

 

5.5 Computational Complexity Comparison  

Fig. 10 shows the simplified overall flows of PPS and direct method, where PPS performs 

multiple 2-D particle filters, and direct method performs single 3-D particle filter. In the case 

of sphere density with radius r, direct method ideally requires r3 particles wile PPS method 

requires r2 particles. It means that direct method requires  
 

  time particles and its 

corresponding computational resources. Thus, under dual processors available, PPS method 

has  
 

  time less complexity. 
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(c) Enlargement of A section (d) Enlargement of B section 

Fig. 9. Scenario 3: The first 13 time instants xy - and yz -planes are selected, and the last 37 time 

instants, the xy - and zx -planes are selected. For the performance comparison between PPS and direct 

3D method, the certain section in CRLB is enlarged (A and B). 
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Fig. 10 Simplified algorithmic flows of PPS and direct method. 

6. Conclusions 

We have proposed an object tracking algorithm in 3-D space with a passive acoustic sensor. 

The particle filtering technique used in the 2-D bearings-only tracking problem has been 

applied to the 3-D space. 3-D space is decomposed into 2-D planes, and by exploiting the fact 

that the noisy measurements of the acoustic sensor differ on the projected planes, we have 

proved the effectiveness of the plane selection based on the characteristics. We have shown 

that the particle filtering with the proposed plane selection is more flexible than the direct 3-D 

method where the proposed method can be easily extended to multiple sensor particle filtering. 

We have also analyzed the performance of the proposed method using the Cramer-Rao Lower 

Bound (CRLB) and the theoretical lower bound, and the simulation results are compared to 

those of the direct 3-D method. We have shown that the proposed method outperforms the 

direct 3-D method. 
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