• Title/Summary/Keyword: Data Fabrication

Search Result 692, Processing Time 0.036 seconds

Experimental evaluation of fatigue strength for small diameter socket welded joints under vibration loading condition

  • Oh, Chang-Young;Lee, Jun-Ho;Kim, Dong-Woo;Lee, Sang-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3837-3851
    • /
    • 2021
  • To investigate how the fabrication and repair of socket welded joints could be used to enhance fatigue resistance under vibration condition, experimental test data of installation conditions that potentially influence fatigue strength were analyzed with the S-N curve. It was found that the decreasing fatigue strength of stainless steel socket welded joints was attributed to the effect of high heat input of welding process. The effect of welding method, slip-on gap and radial-gap conditions on fatigue strength was insignificant. The test data of repair technique application, 2 × 1 leg length and of socket weld overlay, clearly showed higher fatigue strength but there was a limitation for higher stress region because of the weld toe crack.

Development of a 3D Printing Open-market System for Copyright Protection and Remote 3D Printing (3D프린터용 설계데이터의 저작권보호와 원격출력을 지원하는 오픈 마켓 시스템 개발)

  • Kim, Sung Gyun;Yoo, Woosik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.3
    • /
    • pp.253-258
    • /
    • 2015
  • The 3D printing is any of various processes for making a three dimensional object of almost any shape from a 3D model. Recently, a rapidly expanding hobbyist and home-use market has become established with the inauguration of the open-source RepRap and Fab@Home projects. However, this causes problems regarding copyright protection and usage of illegal 3D data. In this paper, we developed a 3D printing open-market system, which guarantees copyright protection using the remote 3D printing without direct distribution of 3D design data. Because most of the home-use 3D printers are FFF (Fused Filament Fabrication) based on NC code system, open-market system uses FFF 3D printers. Also, open-market system inspects the uploaded 3D model data, so the system can prevent distribution of illegal model data such as weapons, etc.

Process Conditions for the Fabrication of Hydrophobic Surfaces with Different Photo-curable Resins (광경화성 레진의 성분 변화에 대한 소수성 표면 제작을 위한 공정 조건)

  • Hong, Sung-Ho;Woo, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.267-273
    • /
    • 2020
  • This study experimentally investigates hydrophobic surfaces fabricated via additive manufacturing. Additive manufacturing, commonly known as 3D printing, is the process of joining materials to fabricate parts from 3D model data, usually in a layer-upon-layer manner. Digital light processing is used to fabricate hydrophobic surfaces in this study. This method uses photo-curable resins and ultraviolet (UV) sources. Moreover, this technique generally has faster shaping speeds and is advantageous for the fabrication of small components because it enables the fabrication of one layer at a time. Two photo-curable resins with different compositions are used to fabricate micro-patterns of hydrophobic surfaces. The resins are composed of a photo-initiator, monomer, and oligomer. Experiments are conducted to determine suitable process conditions for the fabrication of hydrophobic surfaces depending on the type of resin. The most important factors affecting the process conditions are the UV exposure time and slice thickness. The fabrication capability according to the process conditions is evaluated using the side and top views of the micro-patterns observed using a microscope. The micro-patterns are collapsed and intertwined when the exposure time is short because sufficient light (heat) is not applied to cure the photo-curable resin with a given slice thickness. On the other hand, the micro-patterns are attached to each other when the exposure time is prolonged because the over-curing time can cure the periphery of a given shape. When the slice is thicker, the additional curing area is enlarged in each slice owing to the straightness of UV light, and the slice surface becomes rough.

Fabrication of Nano Dot and Line Arrays Using NSOM Lithography

  • Kwon Sangjin;Kim Pilgyu;Jeong Sungho;Chang Wonseok;Chun Chaemin;Kim Dong-Yu
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.16-21
    • /
    • 2005
  • Using a cantilever type nanoprobe having a 100㎚m aperture at the apex of the pyramidal tip of a near-field scanning optical microscope (NSOM), nanopatterning of polymer films are conducted. Two different types of polymer, namely a positive photoresist (DPR-i5500) and an azopolymer (Poly disperse orange-3), spincoated on a silicon wafer are used as the substrate. A He-Cd laser with a wavelength of 442㎚ is employed as the illumination source. The optical near-field produced at the tip of the nanoprobe induces a photochemical reaction on the irradiated region, leading to the fabrication of nanostructures below the diffraction limit of the laser light. By controlling the process parameters properly, nanopatterns as small as 100㎚ are produced on both the photoresist and azopolymer samples. The shape and size variations of the nanopatterns are examined with respect to the key process parameters such as laser beam power, irradiation time or scanning speed of the probe, operation modes of the NSOM (DC and AC modes), etc. The characteristic features during the fabrication of ordered structures such as dot or line arrays using NSOM lithography are investigated. Not only the direct writing of nano array structures on the polymer films but also the fabrication of NSOM-written patterns on the silicon substrate were investigated by introducing a passivation layer over the silicon surface. Possible application of thereby developed NSOM lithography technology to the fabrication of data storage is discussed.

A Study on Fault Classification of Machining Center using Acceleration Data Based on 1D CNN Algorithm (1D CNN 알고리즘 기반의 가속도 데이터를 이용한 머시닝 센터의 고장 분류 기법 연구)

  • Kim, Ji-Wook;Jang, Jin-Seok;Yang, Min-Seok;Kang, Ji-Heon;Kim, Kun-Woo;Cho, Young-Jae;Lee, Jae-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.29-35
    • /
    • 2019
  • The structure of the machinery industry due to the 4th industrial revolution is changing from precision and durability to intelligent and smart machinery through sensing and interconnection(IoT). There is a growing need for research on prognostics and health management(PHM) that can prevent abnormalities in processing machines and accurately predict and diagnose conditions. PHM is a technology that monitors the condition of a mechanical system, diagnoses signs of failure, and predicts the remaining life of the object. In this study, the vibration generated during machining is measured and a classification algorithm for normal and fault signals is developed. Arbitrary fault signal is collected by changing the conditions of un stable supply cutting oil and fixing jig. The signal processing is performed to apply the measured signal to the learning model. The sampling rate is changed for high speed operation and performed machine learning using raw signal without FFT. The fault classification algorithm for 1D convolution neural network composed of 2 convolution layers is developed.

A Study on the Fabrication of bone Model X-ray Phantom Using CT Data and 3D Printing Technology (CT 데이터와 3D 프린팅 기술을 이용한 뼈 모형 X선 팬텀 제작에 관한 연구)

  • Yun, Myeong Seong;Han, Dong-Kyoon;Kim, Yeon-Min;Yoon, Joon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.879-886
    • /
    • 2018
  • A 3-dimensional (D) printer is a device capable of outputting a three-dimensional solid object based on data modeled in a computer. These features are utilized in the bone model X - ray phantom production etc using CT data by fusing with the radiation science field. A bone model phantom was made using data obtained by CT scan of an existing Pelvis phantom, using PLA, Wood, XT-CF20, Glow fill, Steel filaments which are materials of Fused Filament Fabrication (FFF) 3D printer.Measure Hounsfield Unit (HU) with images obtained by CT scan of the existing Pelvis phantom and five material phantoms made with 3D printer under the same conditions,SI and SNR were measured using a diagnostic X-ray generator, and each phantom was compared and analyzed.As a result, the X - ray phantom in the X - ray examination condition of the limb was found to be most suitable for the glow fill filament.The characteristics of the filament can be known to the base of this research and the practicality of X - ray phantom fabrication was confirmed.

VERIFICATION OF COSMOS CODE USING IN-PILE DATA OF RE-INSTRUMENTED MOX FUELS

  • Lee, Byung-Ho;Koo, Yang-Hyun;Cheon, Jin-Sik;Oh, Je-Yong;Joo, Hyung-Kook;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2002.05a
    • /
    • pp.242-242
    • /
    • 2002
  • Two MIMAS MaX fuel rods base-irradiated in a commercial PWR have been reinstrumented and irradiated at a test reactor. The fabrication data for two MOX roda are characterized together with base irradiation information. Both Rods were reinstrumented to be fitted with thermocouple to measure centerline temperature of fuel. One rod was equipped with pressure transducer for rod internal pressure whereas the other with cladding elongation detector. The post irradiation examinations for various items were performed to determine fuel and cladding in-pile behavior after base irradiation. By using well characterized fabrication and re-instrumentation data and power history, the fuel performance code, COSMOS, is verified with measured in-pile and PIE information. The COMaS code shows good agreement for the cladding oxidation and creep, and fission gas release when compared with PIE dad a after base irradiaton. Based on the re-instrumention information and power history measured in-pile, the COSMOS predicts re-instrumented in-pile thermal behaviour during power up-ramp and steady operation with acceptable accuracy. The rod internal pressure is also well simulated by COSMOS code. Therfore, with all the other verification by COSMOS code up to now, it can be concluded that COSMOS fuel performance code is applicable for the design and license for MaX fuel rods up to high burnup.

  • PDF

Development of Failure Reporting Analysis and Corrective Action System

  • Hong, Yeon-Woong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.97-112
    • /
    • 2006
  • FRACAS(Failure Reporting, Analysis and Corrective Action System) is intended to provide management visibility and control for reliability and maintainability improvement of hardware and associated software by timely and disciplined utilization of failure and maintenance data to generate and implement effective corrective actions to prevent failure recurrence and to simplify or reduce the maintenance tasks. This process applies to acquisition for the design, development, fabrication, test, and operation or military systems, equipment, and associated computer programs. This paper shows the FRACAS development process and developed FRACAS system for a defense equipment.

  • PDF

Process of Using BIM for Small-Scale Construction Projects - Focusing on the Steel-frame Work - (소규모 건축공사의 BIM 정보 활용을 위한 프로세스 제안 - 철골공사 중심으로 -)

  • Kim, Jin-Kwang;Yoo, Moo-Young;Ham, Nam-Hyuk;Kim, Jae-Jun;Choi, Chang-Shik
    • Journal of KIBIM
    • /
    • v.8 no.2
    • /
    • pp.41-50
    • /
    • 2018
  • The current study focused on the utilization of building information modeling (BIM) data in steel-frame structures, which help to reduce project durations because they employ prefabricated structural members that are assembled on-site. In addition, a business process model was proposed using BIM data collected during the preconstruction, structural steel fabrication, and on-site construction phases of an actual steel-frame project. The ultimate expectation is that BIM data support at each phase, as well as the increased understanding among project participants, will result in an increase in project management productivity. The results from the current study are summarized as follows: To implement a BIM capable of application to steel-frame projects and data utilization, existing theories were studied to develop the construction project steps, both generally into the preconstruction (A1), steel fabrication (A2), and on-site construction phases, (A3) and specifically into 19 BIM-applicable phases. Based on the derived BIM-applicable phases, the model elements of the BIM object were identified, and the shortcomings of existing steel-frame projects were ameliorated, resulting in an improved data flow model. Moreover, for the proposed BIM data flow to progress efficiently, the BIM specialist needs to be well-acquainted with the phase-specific three-dimensional (3D) model output, and the infrastructure to construct an error-free 3D model must be provided. Based on the actual construction example, the BIM data utilized steel-frame projects - via production reports, clash checks, two-dimensional (2D) drawings, four-dimensional (4D) simulations, and 3D scanning - to make cooperation and communication among participants easier.

Development of 3D Modeling Technology of Human Vacancy for Bio-CAD (Bio-CAD를 위한 인체공동부의 3차원 모델링 기술 개발)

  • Kim, Ho-Chan;Bae, Yong-Hwan;Kwon, Ki-Su;Seo, Tae-Won;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.138-145
    • /
    • 2009
  • Custom medical treatment is being widely adapted to lots of medical applications. A technology for 3D modeling is strongly required to fabricate medical implants for individual patient. Needs on true 3D CAD data of a patient is strongly required for tissue engineering and human body simulations. Medical imaging devices show human inner section and 3D volume rendering images of human organs. CT or MRI is one of the popular imaging devices for that use. However, those image data is not sufficient to use for medical fabrication or simulation. This paper mainly deals how to generate 3D geometry data from those medical images. A new image processing technology is introduced to reconstruct 3D geometry of a human body vacancy from the medical images. Then a surface geometry data is reconstructed by using Marching cube algorithm. Resulting CAD data is a custom 3D geometry data of human vacancy. This paper introduces a novel 3D reconstruction process and shows some typical examples with implemented software.