• 제목/요약/키워드: Data Fabrication

검색결과 693건 처리시간 0.025초

Behaviors of turn-to-turn contact resistance (Rc) of various REBCO CC tapes according to applied contact pressure

  • Jeong, Chanhun;Shin, Hyung-Seop
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권3호
    • /
    • pp.15-20
    • /
    • 2018
  • No-insulation (NI) pancake magnets are fabricated using Rare earth-Barium-Copper Oxide (REBCO) coated conductor (CC) tapes, which enabled a very compact magnet in the aspects of high critical current density ($J_c$) and high mechanical strength by removing insulation and allowing thinner stabilizer. They have also advantages such as self-quench protection. Therefore, it does not need quench detection and protection that can be very challenging in a high critical temperature ($T_c$) superconducting magnet technology. Recently, it was reported that the NI REBCO CC magnets have some drawbacks of long charging time and high field ramp loss which will be a concern in the operation of cryocooled magnets. These issues are related to the turn-to-turn contact resistivity and can be released by managing it. This is also closely related to the activity of reducing the contact joint resistance in the case of CC joints for long length CC fabrication. Therefore, in this study, the turn-to-turn contact resistance ($R_c$) at the CC contact part of differently stabilized CC tapes was measured. The behaviors of $R_c$ at CC contact parts according to the applied contact pressure were investigated. The range of $R_c$ measured for CC tapes adopted will provide fundamental data for design and fabrication of the CC NI coils.

웨어러블 텍스타일 스트레인 센서 리뷰 (Wearable Textile Strain Sensors)

  • 노정심
    • 한국의류산업학회지
    • /
    • 제18권6호
    • /
    • pp.733-745
    • /
    • 2016
  • This paper provides a review of wearable textile strain sensors that can measure the deformation of the body surface according to the movements of the wearer. In previous studies, the requirements of textile strain sensors, materials and fabrication methods, as well as the principle of the strain sensing according to sensor structures were understood; furthermore, the factors that affect the sensing performance were critically reviewed and application studies were examined. Textile strain sensors should be able to show piezoresistive effects with consistent resistance-extension in response to the extensional deformations that are repeated when they are worn. Textile strain sensors with piezoresistivity are typically made using conductive yarn knit structures or carbon-based fillers or conducting polymer filler composite materials. For the accuracy and reliability of textile strain sensors, fabrication technologies that would minimize deformation hysteresis should be developed and processes to complement and analyze sensing results based on accurate understanding of the sensors' resistance-strain behavior are necessary. Since light-weighted, flexible, and highly elastic textile strain sensors can be worn by users without any inconvenience so that to enable the users to continuously collect data related to body movements, textile strain sensors are expected to become the core of human interface technologies with a wide range of applications in diverse areas.

새로운 형태의 영구전류모드용 초전도 전원장치의 제작 및 운전특성 (The Fabrication and Operational Characteristics of a Novel Type Superconducting Power Supply for Persistent Current Mode)

  • 김호민;윤용수;고태국;한태수;장승찬;오상수
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권12호
    • /
    • pp.771-777
    • /
    • 2000
  • This paper deals with the design and fabrication of a novel superconducting power supply system, and characteristics have been investigated through experiments. Superconducting power supply consists of rotating and static parts, and superconducting magnet. In this experiment, superconducting foils were placed in parallel within the static part of the machine, pumping currents were measured with respect to rotor speeds and excitation currents. In addition, in order to observe the rotating flux distribution in the superconducting foils, several hall-sensors were placed in it. With the flux distribution acquired, effect of the flux on the superconducting foil during the process of current pumping has been discussed. Also, the general operational characteristics of the superconducting power supply system have been investigated on the basis of the current and voltage data, and magnetic field values acquired through the experiments.

  • PDF

The fabrication of $MgB_2$/SUS Tapes by PIT Process

  • 송규정;이남진;장현만;하홍수;하동우
    • Progress in Superconductivity
    • /
    • 제3권2호
    • /
    • pp.213-217
    • /
    • 2002
  • We have fabricated successfully single-filament composite $MgB_2$/SUS tapes, as an ultrarobust conductor type. The fabrication of the $MgB_2$/SUS tapes was performed by power-in-tube (PIT) process such as swaging and cold rolling. The critical transition temperatures $T_{c}$~38.5 K and ~36 K were observed for the sintered and the nonsintered $MgB_2$/SUS tapes, respectively In addition, the isothermal magnetization M(H) of the sintered $MgB_2$/SUS tapes was measured at temperatures T (between 5 and 50 K) in fields up to 6 T, employing a PPMS-9 (Quantum Design). The persistent current density (J$T_{P}$) values were obtained from the M(H) data, using Bean model, fur the sintered $MgB_2$/SUS tapes. The estimated values were higher than ~ 6$\times$ $10^{5}$ $A/\textrm{cm}^2$ at T = 5 K, with H : 0 G. We also investigated the cross section of the sintered tapes, by using SEM and EDX. An evidence of weak reaction on boundary between $MgB_2$ and SUS tube is found in the SEM and EDX.X.X.X.

  • PDF

자유도 제약을 이용한 블록의 완성도 평가 연구 (A Research on Completeness Assessment of Blocks using DOF Restriction)

  • 김찬석;신종계;노재규
    • 대한조선학회논문집
    • /
    • 제51권5호
    • /
    • pp.356-361
    • /
    • 2014
  • Accurate block shape assessment is critical for ship manufacturing and a careful assessment of the shape of a fabricated block against the design shape is a core issue. However, in current fabrication practice, the shape of each block is evaluated manually using rigid body transformation. This manual evaluation process entirely depends on workers' experiences and knowledge and makes automation of block shape assessment difficult. In this paper we propose a computation method on the registration for shape assessment of a block during the fabrication process and for evaluation of its completion against the design shape. A conversion on matching method by adding DOF(degree of freedom) restriction is required to reach the goals. We test our method using a real block quality assessment data to demonstrate its applicability to real ship manufacturing process.

실리콘 v-groove를 이용한 광섬유-광검출기 어레이 모듈 제작 (Fabrication of the Optical Fiber-Photodiode Array Module Using Si v-groove)

  • 정종민;지윤규;박찬용;유지범;박경현;김홍만
    • 전자공학회논문지A
    • /
    • 제31A권6호
    • /
    • pp.88-97
    • /
    • 1994
  • We describe the design, fabrication, and performance of the optical fiber-photodiode 1$\times$12 arry module using mesa-type InS10.53T GaS10.47TAS/INP 1$\times$12 PIN photodiode array. We fabricated the PIN PD array for high-speed optical fiber parallel data link optimizing quantum efficiency, operating speed sensitivity from the PIN-FET structure, and electrical AC crosstalk. For each element of the array, the diameter of the photodetective area is 80 $\mu$m, the diameter of the p-metal pad is 90 $\mu$m, and the photodiode seperation is 250 $\mu$m to use Si v-groove. Ground conductor line is placed around diodes and p-metal pads are formed in zigzag to reduce Ac capacitance coupling between array elements. The dark current (IS1dT) is I nA and the capacitance(CS1pDT) is 0.9 pF at -5 V. No signifcant variations of IS1dT and CPD from element to element in the array were observed. We calulated the coupling efficiency for 10/125 SMF and 50/125 GI MMF, and measured the responsivity of the PD array at the wavelength is 1.55 $\mu$ m. Responsivities are 0.93 A/W for SMF and 0.96 A/W for MMF. The optical fiber-PD array module is useful in numerous high speed digital and analog photonic system applications.

  • PDF

ADC-Based Backplane Receivers: Motivations, Issues and Future

  • Chung, Hayun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권3호
    • /
    • pp.300-311
    • /
    • 2016
  • The analog-to-digital-converter-based (ADC-based) backplane receivers that consist of a front-end ADC followed by a digital equalizer are gaining more popularity in recent years, as they support more sophisticated equalization required for high data rates, scale better with fabrication technology, and are more immune to PVT variations. Unfortunately, designing an ADC-based receiver that meets tight power and performance budgets of high-speed backplane link systems is non-trivial as both front-end ADC and digital equalizer can be power consuming and complex when running at high speed. This paper reviews the state of art designs for the front-end ADC and digital equalizers to suggest implementation choices that can achieve high speed while maintaining low power consumption and complexity. Design-space exploration using system-level models of the ADC-based receiver allows through analysis on the impact of design parameters, providing useful information in optimizing the power and performance of the receiver at the early stage of design. The system-level simulation results with newer device parameters reveal that, although the power consumption of the ADC-based receiver may not comparable to the receivers with analog equalizers yet, they will become more attractive as the fabrication technology continues to scale as power consumption of digital equalizer scales well with process.

Design and Test Results of an Actively Shielded Superconducting Magnet for Magnetic Resonance Imaging

  • Jin, Hong-Beom;Ryu, Kang-Sik;Oh, Bong-Hwan;Ryu, Kyung-Woo;Jeoun, In-Young
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권6호
    • /
    • pp.95-105
    • /
    • 1997
  • In this paper, we have studied about design and fabrication of the actively shielded superconducting MRI magnet. Nonlinear optimization methods are usually used to find optimum coil configurations. However the selection of initial coil configurations is very difficult. In case bad initial data are used, it is even impossible to find optimum coil configurations which satisfy predefined constraints. We have developed computer optimization program which consists of two steps. Initial coil configurations are easily selected through linear optimization in the first step and optimum coil configurations are found through nonlinear optimization in the second step. We have also studied about superconducting shim coils to cancel error fields caused by coil fabrication errors. Many researchers published design concepts of shim coil. However all these studies are for shim coil design using filamentary coils with single turn, Shim coils with multi-turns should be used to produce enough field strength to cancel error fields. We have developed computer program for the design of shim coils which have proper thickness and length. An actively shielded superconducting MRI magnet with a small warm bore was fabricated and four sets of superconducting shim coils were equipped. The magnetic field distributions were measured and field correction was carried out using shim coils.

  • PDF

A 10-Gbit/s Limiting Amplifier Using AlGaAs/GaAs HBTs

  • Park, Sung-Ho;Lee, Tae-Woo;Kim, Yeong-Seuk;Kim, Il-Ho;Park, Moon-Pyung
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권6호
    • /
    • pp.197-201
    • /
    • 1997
  • To realize 10-Gbit/s optical transmission systems, we designed and fabricated a limiting amplifier with extremely high operation frequencies over 10-GHz using AlGaAs/GaAs heterojunction bipolar transistors (HBTs), and investigated their performances. Circuit design and simulation were performed using SPICE and LABRA. A discrete AlGaAs/GaAs HBT with the emitter area of 1.5${\times}$10$\mu\textrm{m}$$^2$, used for the circuit fabrication, exhibited the cutoff frequency of 63GHz and maximum oscillation frequency of 50GHz. After fabrication of MMICs, we observed the very wide bandwidth of DC∼15GHz for a limiting amplifier from the on-wafer measurement. Ceramic-packaged limiting amplifier showed the excellent eye opening, the output voltage swing of 750mV\ulcorner, and the rise/fall time of 40ps, measured at the data rates of 10-Gbit/s.

  • PDF

An MMIC VCO Design and Fabrication for PCS Applications

  • Kim, Young-Gi;Park, Jin-Ho
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권6호
    • /
    • pp.202-207
    • /
    • 1997
  • Design and fabrication issues for an L-band GaAs Monolithic Microwave Integrated Circuit(MMIC) Voltage Controlled Oscillator(VCO) as a component of Personal Communications Systems(PCS) Radio Frequency(RF) transceiver are discussed. An ion-implanted GaAs MESFET tailored toward low current and low noise with 0.5mm gate length and 300mm gate width has been used as an active device, while an FET with the drain shorted to the source has been used as the voltage variable capacitor. The principal design was based on a self-biased FET with capacitive feedback. A tuning range of 140MHz and 58MHz has been obtained by 3V change for a 600mm and a 300mm devices, respectively. The oscillator output power was 6.5dBm wth 14mA DC current supply at 3.6V. The phase noise without any buffer or PLL was 93dB/1Hz at 100KHz offset. Harmonic balance analysis was used for the non-linear simulation after a linear simulation. All layout induced parasitics were incorporated into the simulation with EEFET2 non-linear FET model. The fabricated circuits were measured using a coplanar-type probe for bare chips and test jigs with ceramic packages.

  • PDF